摘要
考虑一类非线性三阶差分方程Δ^(3)u(t-3)+αΔ^(2)u(t-2)+βΔu(t-1)=f(t,u(t)),t∈[3,T]Z正周期解的存在性和多解性,其中T>4,α>0,-1<β<0,f:[3,T]_(Z)×[0,∞)→R关于u∈[0,∞)连续,f(t+ω,u)=f(t,u),ω∈Z^(+)。主要结果的证明基于Guo-Krasnosel'skii不动点定理。
This paper considers the existence and multiplicity of positive periodic solutions for a class of nonlinear third-order difference equationΔ^(3)u(t-3)+αΔ^(2)u(t-2)+βΔu(t-1)=f(t,u(t)),t∈[3,T]Z,where T>4,α>0,-1<β<0,f:[3,T]_(Z)×[0,∞)→R is continuous with respect to u∈[0,∞),f(t+ω,u)=f(t,u),ω∈Z^(+).The proof of the main results is based on Guo-Krasnosel'skii fixed point theorem.
作者
赵娇
ZHAO Jiao(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2021年第9期50-58,共9页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(12061064)。
关键词
三阶
差分方程
锥
正周期解
third-order
difference equation
cone
positive periodic solution