期刊文献+

基于高阶特征交互的点击率预估模型的实现 被引量:1

Implementation of click rate prediction model based on high-order feature interaction
下载PDF
导出
摘要 传统的低阶特征模型不能充分利用大数据,从多个维度描述数据和用户。专注于高阶特征提取,结合显式和隐式特征交互的点击率预估模型可以利用好大数据的特点。使用Tensorflow框架搭建包含深度神经网络、因子压缩交互网络和多重特征自交互网络结构的模型,使用淘宝展示广告点击率预估数据集进行训练。模型采用对数损失值和ROC曲线下面积作为评价指标,与原始的LR、FM、Deep&Wide等典型模型进行比较,对数损失值降低了0.04,AUC值提高了0.05左右。 Traditional low-level feature models cannot make full use of big data and describe data and users from multiple dimensions.The click-through rate prediction model that focuses on high-level feature extraction combining the interaction of explicit and implicit features can make good use of the characteristics of big data.The Tensorflow framework was used to build a model including a deep neural network,a compressed interaction network and a multiple self-interaction network structure,and the Ad Display/Click data on Taobao.com were used for training.The logarithmic loss value and the area under the ROC curve were used as evaluation indicators,and compared with the original LR,FM,Deep&Wide and other typical models.The logarithmic loss value is reduced by 0.04,and the AUC value is increased by about 0.05.
作者 高巍 周河晓 李大舟 GAO Wei;ZHOU He-xiao;LI Da-zhou(School of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China)
出处 《计算机工程与设计》 北大核心 2021年第10期2852-2859,共8页 Computer Engineering and Design
基金 辽宁省教育厅科学技术研究基金项目(LJ2020033) 沈阳化工大学教育教学培育工程基金项目(2020,No.35)。
关键词 点击率预估 推荐系统 高阶特征交互 深度神经网络 因子压缩交互网络 多重特征自交互网络 CTR recommendation system high-order feature interaction deep neural network compressed interaction network automatic feature interaction learning
  • 相关文献

参考文献3

二级参考文献13

共引文献530

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部