摘要
为解决SVM、Bayes、RNN(recurrent neural network)等传统算法在蛋白质结构分类任务中精度低的问题,提出一种基于残差网络的蛋白质超二级结构图像分类方法。将PDB(protein data bank)和SCOP(structural classification of proteins)数据库中的4类蛋白质超二级结构3D模型转化为14角度拍摄的2D图像,针对每类图像,通过残差网络单元进行深度特征提取和优化,利用神经网络模型训练,将验证精度最高的模型保存下来并进行测试。实验结果表明,分类精度达到了90.2%,验证了模型的可行性和算法的有效性。
To solve the problem of low accuracy of traditional algorithms such as SVM,Bayes,RNN(recurrent neural network)in protein structure classification task,a protein super secondary structure image classification method based on residual network was proposed.Four kinds of the 3D proteins model of super secondary structure in PDB(protein data bank)and SCOP(structural classification of proteins)datasets were transformed into 2D images taken from 14 angles.For each kind of images,the depth features were extracted and optimized by residual network unit,and then trained by neural network model.The model with the highest verification accuracy was saved and tested.Experimental results show that the classification accuracy reaches 90.2%,which verifies the feasibility of the model and the effectiveness of the algorithm.
作者
马金林
石立
马自萍
MA Jin-lin;SHI Li;MA Zi-ping(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,China)
出处
《计算机工程与设计》
北大核心
2021年第10期2910-2916,共7页
Computer Engineering and Design
基金
宁夏自然科学基金项目(2020AAC03215)
北方民族大学“计算机视觉与虚拟现实”创新团队基金项目(2019X02)
北方民族大学教育教学重大研究基金项目(2018ZHJY01)
北方民族大学重大专项基金项目(ZDZX201801)
宁夏高等学校一流学科建设(数学)基金项目(NXYLXK2017B09)
国家自然科学基金项目(61462002、61762003、61862001)。
关键词
机器学习
卷积神经网络
残差网络单元
蛋白质超二级结构
图像分类
machine learning
convolutional neural network
residual network unit
protein super secondary structure
image classification