期刊文献+

基于变权重随机森林的硬盘故障预测方法 被引量:2

Hard disk failure prediction method based on variable weight random forest
下载PDF
导出
摘要 为保证一定硬盘故障预测准确率并消除预测误判率,提出一种基于变权重随机森林模型的优化方法。采用计算特征属性值和硬盘故障的相关性对原始数据集进行降维处理,考虑到决策树的节点分裂信息值可能为0的情况,提出分裂信息值与分裂信息平均值之和来代替单一的分裂信息值;根据精度和多样性值选取较优决策树,为其动态分配权值组成强分类器随机森林模型。该模型在保证极高故障预测准确率的同时,将故障预测误判率降低到了0.008%。相比较之前的模型,准确率提高的同时误判率低至0,为解决预测硬盘故障的问题提供了一种借鉴思路。 To ensure the accuracy of hard disk fault prediction and eliminate the miscalculation rate of prediction,an optimization method based on variable weight random forest model was proposed.The dimension reduction of the original data set was carried out by calculating the correlation between the characteristic attribute value and the hard disk fault.Considering that the node splitting information value of the decision tree may be 0,the sum of the splitting information value and the splitting information average value was proposed to replace the single splitting information value.According to the precision and diversity,the optimal decision tree was selected and the dynamic distribution weight was assigned to form a strong classifier random forest model.This model not only ensures the high accuracy of fault prediction,but also reduces the error rate of fault prediction to 0.008%.Compared with the previous model,the accuracy is improved while the misjudgment rate is as low as 0,which provides an idea for solving the problem of predicting hard disk faults.
作者 李国 常甜甜 李静 LI Guo;CHANG Tian-tian;LI Jing(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机工程与设计》 北大核心 2021年第10期2988-2994,共7页 Computer Engineering and Design
基金 国家自然科学基金联合基金项目(U1833114) 国家自然科学基金青年基金项目(61702521) 民航科技创新重大专项基金项目(MHRD20160109) 民航安全能力基金项目(TRSA201803)。
关键词 主动容错机制 自我检测、分析和报告技术 特征属性提取 随机森林 动态权重分配 active fault tolerance mechanism SMART feature attribute extraction random forest dynamic weight distribution
  • 相关文献

参考文献5

二级参考文献36

  • 1杨俊燕,张优云,赵荣珍.支持向量机在机械设备振动信号趋势预测中的应用[J].西安交通大学学报,2005,39(9):950-953. 被引量:25
  • 2曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 3续媛君,潘宏侠.设备故障趋势预测的分析与应用[J].振动.测试与诊断,2006,26(4):305-308. 被引量:11
  • 4刘景宁,饶国林,冯丹.一种基于S.M.A.R.T的保障RAID数据高可靠性的方法[J].计算机工程与科学,2007,29(5):109-111. 被引量:1
  • 5Zhu B,Wang G,Liu X,et al.Proactive drive failure prediction for large scale storage systems. Proc of the 29th IEEE Conf on Massive Storage Systems and Technologies (MSST) . 2013
  • 6Wang Y,Miao Q,Pecht M.Health monitoring of hard disk drive based on mahalanobis distance. Proc of Conf in Prognostics and System Health Management Conf (PHM2011) . 2011
  • 7Eduardo Pinheiro,Wolf-Dietrich Weber,Luiz Andr’’e Barroso.Failure trends in a large disk drive population. Proc of the5th USENIX Conf on File and Storage Technologies (FAST’’07) . 2007
  • 8Li J,Ji X,Jia Y,et al.Hard drive failure prediction using classification and regression trees. Proc of the 44th Annual IEEE/IFIP Int Conf on Dependable Systems and Networks (DSN) . 2014
  • 9Ma A,Douglis F,Lu G,et al.RAIDShield:Characterizing,monitoring,and proactively protecting against disk failures. Proc of the 13th USENIX Conf on File and Storage Technologies (FAST’’15) . 2015
  • 10Zhao Y,Liu X,Gan S, et al.Predicting disk failures with HMM-and HSMM-basedapproaches. Advances in Data Mining. Applications and Theoretical Aspects . 2010

共引文献36

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部