期刊文献+

Anomalous microstructure and tribological evaluation of AlCrFeNiW_(0.2)Ti_(0.5)high-entropy alloy coating manufactured by laser cladding in seawater 被引量:11

原文传递
导出
摘要 To evaluate the potential of high entropy alloys for marine applications,a new high entropy alloy coating of AlCrFeNiW_(0.2)Ti_(0.5)was designed and produced on Q235 steel via laser cladding.The microstructure,microhardness and tribological performances sliding against YG6 cemented carbide,GCr15 steel and Si_(3)N_(4)ceramic in seawater were studied in detail.The AlCrFeNiW_(0.2)Ti_(0.5)coating showed an anomalous’sunflower-like’morphology and consisted of BCC and ordered B2 phases.The microhardness was approximately 692.5 HV,which was 5 times higher than substrate.The coating showed more excellent tribological performances than Q235 steel and SUS304,a typical material used in seawater environment,sliding against all three coupled balls in seawater.Besides,the wear and friction of AlCrFeNiW_(0.2)Ti_(0.5)coating sliding against YG6 in seawater were most mild.The main reason was the generation of Mg(OH)_(2),CaCO_(3),metal oxides and hydroxides and the formation of protective tribo-film on the worn surface of AlCrFeNiW_(0.2)Ti_(0.5)coating in the process of reciprocated sliding.This would effectively hinder the direct contact between the worn surfaces of AlCrFeNiW_(0.2)Ti_(0.5)coating and YG6 ball,resulting in a decrease of friction coefficient and wear rate.Thus the YG6 was an ideal coupled material for AlCrFeNiW_(0.2)Ti_(0.5)coating in seawater,and the coating would become a promising wear-resisting material in ocean environment.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期224-234,共11页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.51771041,51774065,51671044 and 51901116) the National Key Research and Development Program of China(No.2017YFA0403803)。
  • 相关文献

同被引文献129

引证文献11

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部