摘要
利用主成分分析法滤除n维高光谱遥感图像中的大部分冗余信息,得到尽可能保留光谱信息的m维高光谱遥感图像,融合其地物空间分布信息,将m维高光谱遥感图像中的每一个像素点构建为一个2维谱-空信息向量。再利用主成分分析法法对m维高光谱遥感图像进行降维,得到q维融合地物空间分布信息与光谱信息的结果图。通过高斯混合模型预测聚类中心,基于改进的迭代自组织数据分析算法ISODATA(Iterative Selforganizing Data Analysis Techniques Algorithm)对高光谱遥感图像进行聚类,得到最终的分类结果。实验结果表明本方法的地物分类精度优于K⁃means、ISODATA和SVM方法,总体分类精度提升10.14%-13.99%,kappa系数提升3.2%-12.85%。
principal component analysis to filter out most of the redundant information in the n⁃dimensional hyperspectral remote sensing image is used,and the m⁃dimensional hyperspectral remote sensing image that retains the spectral information is obtained as much as possible its spatial distribution information,each pixel in the m⁃dimensional hyperspectral remote sensing image is constructed as a 2⁃dimensional spectrum⁃space information vector.The principal component analysis method is used to reduce the dimension of the m⁃dimensional hyperspectral remote sensing image again,and the result map of the q⁃dimensional fusion of the spatial distribution information of the ground features and the spectral information is obtained.The Gaussian mixture model is used to predict the clustering center,and the hyperspectral remote sensing image is clustered based on the improved ISODATA(Iterative Selforganizing Data Analysis Techniques Algorithm)to obtain the final classification result.Experimental results show that the classification accuracy of the proposed method is better than that of K⁃means,ISODATA and SVM,the overall classification accuracy is increased by 10.14%-13.99%,and the kappa coefficient is increased by 3.2%-12.85%.
作者
闫钧华
苏恺
苏荣华
张寅
王吉远
谷安鑫
YAN Jun-hua;SU Kai;SU Rong-hua;ZNANG Yin;WANG Ji-yuan;GU An-xin(Key Laboratory of Space Photoelectric Detection and Perception,Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Institue of defense engineering,AMS,PLA,Beijing 100850,China)
出处
《宇航计测技术》
CSCD
2021年第4期38-44,共7页
Journal of Astronautic Metrology and Measurement
基金
国家自然科学基金资助(61705104)
中央高校基本科研业务费资助(NJ2020021)
江苏省自然科学基金资助(BK20170804)。
关键词
高光谱遥感图像
地物分类
地物空间分布信息
主成分分析法
聚类
Hyperspectral remote sensing images
Classification of features
Spatial distribution information of features
Principal component analysis
Clustering