摘要
研究了一类具有饱和发生率和饱和治愈率的时滞SEIR传染病模型的稳定性。利用特征值方法,将疾病的潜伏期时滞作为参数,分析了传染病系统的局部渐近稳定行为以及平衡点外围出现Hopf分支的充分条件。最后给出仿真示例,对所得理论分析结果正确性进行了验证。
The stability of a class of delayed SEIR infectious disease model with saturated incidence and saturated cure rate is studied.Using the eigenvalue method,and taking the latency delay of the disease as a parameter,the local asymptotically stable behavior of the infectious disease system and the sufficient conditions for the Hopf bifurcation to appear around the equilibrium point are analyzed.Finally,a simulation example is given to verify the correctness of the theoretical analysis results.
作者
刘娟
陈功
LIU Juan;CHEN Gong(School of Science,Bengbu University,Bengbu 233030,China)
出处
《滨州学院学报》
2021年第4期36-40,共5页
Journal of Binzhou University
基金
国家自然科学基金项目(12001001)
安徽省大学生创新创业训练项目(S201911305105)。