摘要
本文主要建立非线性六阶周期边值问题{u^((6))+αu^((4))-βu"+γu=f(x,u),0≤x≤1,u^((i))(0)=u^((i))(1)=0,i=0,2,4正解的存在性结果,其中α,β,γ∈R和fi:[0,1]×[0,∞]→[0,∞]是连续函数.主要结论的证明基于不动点指数定理.
In this paper,we establish some existence results of positive solutions of the nonlinear sixth-order periodic boundary value problem:{u^((6))+αu^((4))-βu"+γu=f(x,u),0≤x≤1,u^((i))(0)=u^((i))(1)=0,i=0,2,4whereα,β,γ∈R,f:[0,1]×[0,∞]→[0,∞]is continuous.The proof is based on the fixed point index theorem.
作者
吴莉
张丽媛
Wu Li;Zhang Liyuan(Department of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167;Department of mathematics,Nanjing university of Aeronautics and Astronautics,Nanjing 211106;Xingtai No.2 Middle School,Xingtai 054001)
出处
《南京大学学报(数学半年刊)》
2021年第1期114-128,共15页
Journal of Nanjing University(Mathematical Biquarterly)
关键词
六阶微分方程
正解
锥
不动点指数定理
Six order differential equation
Positive solutions
Cone
Fixed point index theorem