期刊文献+

泥水式盾构掘进运输电机车组后轴密封结构优化

Seal structure optimization of electric locomotive crew rear shaft for slurry shield tunneling
下载PDF
导出
摘要 在隧道盾构掘进过程中,渗漏的地下水与渣土形成的泥水混合物对输运电机车组的传动部件会产生渗透堵塞的状况。本文分析研究了后轴结构密封系统泥水渗漏和磨损失效的因素,并基于强化动静结合处的抗磨性和耐用性的机理要求,提出了增加浮动油封、同时将轴承密封系统中的所有密封圈换成耐用性更强的唇型密封圈等优化措施,有效减轻了泥水环境下的后轴轴承泥水的渗漏,提高了密封结构的耐用性和使用年限,提高了泥水盾构用电机车组的使用效率。 In the process of shield tunneling,the mixture formed by mud and leaked groundwater caused seepage and blockage on the transmission parts of electric locomotives.In this paper,the factors of mud leakage and wear failure of the sealing system of rear shaft structure were analyzed and studied.Based on the mechanism requirements of strengthening the wear resistance and durability of the dynamic and static joint,the optimization measures such as adding floating oil seal and replacing all sealing rings in the bearing sealing system with more durable lip sealing rings were put forward.The methods effectively reduced mud leakage of the rear shaft bearing in the muddy water environment,improved the durability and service life of the sealing structure,and improved the efficiency of the slurry shield electric locomotive crew.
作者 陈献忠 李新颖 何金桥 蔡尚松 刘波 童春 蔡贝瑶 CHEN Xianzhong;LI Xinying;HE Jinqiao;CAI Shangsong;LIU Bo;TONG Chun;CAI Beiyao(Xiangtan Traction Locomotive Co.,Ltd.,Xiangtan 411100,Hunan,China;College of Energy and Power Engineering,Changsha University of Science and Technology,Changsha 410114,Hunan,China;College of Electrical and Information Engineering,Hunan Institute of Engineering,Xiangtan 411101,Hunan,China)
出处 《资源信息与工程》 2021年第5期105-108,共4页 Resource Information and Engineering
基金 国家重点研发专项资金资助项目(2017JJ2266)。
关键词 盾构掘进 主轴承密封 浮动油封 唇型密封圈 shield excavation main bearing seal floating oil seal lip seal
  • 相关文献

参考文献4

二级参考文献31

  • 1荆建平,孟光,赵玫,赵三星,刘言.超超临界汽轮机汽流激振研究现状与展望[J].汽轮机技术,2004,46(6):405-407. 被引量:43
  • 2李军,晏鑫,丰镇平.刷式密封泄漏流动特性影响因素的研究[J].热能动力工程,2007,22(3):250-254. 被引量:8
  • 3[15]Li J.YanX,Li G J,Feng Z P.Effects of Pressure Ratio and Sealing Clearance on Leakage Flow Characteristics in the Rotating Honeycomb Labyrinth Seal[C],Proceedings of ASME Turbo Expo 2007.Power for LaIld,Sea,and Air,2007,Montreal,CANADA,GT2007-27740.
  • 4[16]Denecke J,Dullenkopf K,Wittig S,et al.Experimental Investigation of the Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals[C].ASME-Paper GT2005-68677,2005.
  • 5[17]Deneeke J,faerber J,Dullenkopf K,Bauer H J.Dimensional Analysis and Scaling of Rotating Seals[C].ASME paper GT2005-68676,2005.
  • 6[18]Yah X,Li J,Song L,Feag Z.Investigations on the Discharge and Total Temperature Increase Characteristics of the Labyrinth Seals With Honeycomband Smooth Lands[A].Proceedings of ASME Turbo Expo 2008 Power for Land,Sea,and Air GT2008-50399,June,2008,Berlin,Germany.
  • 7[19]Dogu Y.Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach[J].Journal of Engineering for Gas Turbines and Power,2005,127:136~144.
  • 8[20]Chew J W,Guardino C.Simulation of Flow and Heat Transfer in the Tip of a Brush Seal[J].International Journal of Heat and Fluid Flow,2004,25:649~658.
  • 9[23]Childs D W.Turbomachinery Rotordynamics:Phenomena,Modeling and Analysis[M].led,john wiley & Sons,Inc:New York,1993.
  • 10[24]Sodas T,Andres L S.A Bulk Flow Model for Off-Centered Honeycomb Gas Seals[J].ASME Journal of Engineering for Gas Turbines and Power,2007,129(1):185~194.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部