期刊文献+

基于深度强化学习的微网储能系统控制策略研究 被引量:21

Control Strategy of Microgrid Energy Storage System Based on Deep Reinforcement Learning
下载PDF
导出
摘要 微网作为新兴的能源管理形式,近年来发展迅速,为保障微网系统能安全、稳定、经济的运行,为其提供合理的能量调度策略是关键。微网根据运行模式的不同,可分为并网微网和孤岛微网两大类。该文以并网微网为研究对象,应用Simulink仿真技术,按照恒功率控制(PQ控制)原理,搭建了一个包含外部电源、光伏发电、储能,以及负荷的微网系统。然后以此仿真系统为基础,结合深度强化学习中的双重深度Q学习算法,以最小化微网24h从外电网取电费用为目标,在满足微网系统电压偏差、功率平衡以及储能的荷电状态等约束下,以储能的实时充放电功率为控制变量,训练得到储能控制的优化策略。并通过实验验证与传统方法进行对比,分别从定性角度分析了储能充放电策略的合理性,和从定量角度展示了该文所提方法在优化购电费用上的有效性。 As a new form of energy management,a microgrid has developed rapidly in recent years.In order to ensure the safe,stable and economical operation of a microgrid system,it is important to provide it with reasonable energy scheduling strategy.According to their operating modes,micro-grids can be divided into two categories:grid-connected microgrids and island microgrids.This paper takes the grid-connected microgrids as the object,applies the Simulink simulation technology to build a microgrid system including an external power supply,photovoltaic power generation,energy storage,and load according to the principle of constant power control(PQ control).Based on this simulation system,this microgrid system is combined with the double deep Q network algorithmfirstly.Then it is trained to get an optimization strategy of energy storage control problem,the goal of which is to minimize the 24-hour electricity cost while meeting the voltage deviation of the microgrid,power balance and the constraint of state of charge of the energy storage.Through experimental verification,the rationality of the energy storage strategy is analyzed from a qualitative perspective,and the effectiveness of the method proposed in this paper is demonstrated from a quantitative perspective.
作者 梁宏 李鸿鑫 张华赢 胡子珩 秦兆铭 曹军威 LIANG Hong;LI Hongxin;ZHANG Huaying;HU Ziheng;QIN Zhaoming;CAO Junwei(School of Information Scicnce and Technology,Tsinghua University,Haidian District,Beijing 100084,China;New Smart City High-quality Power Supply Joint Laboratory of China Southern Power Grid(Shenzhen Power Supply Co.,Ltd.,),Shenzhen 518020,Guangdong Province,China;Beijing National Research Center for Information Science and Technology,Haidian District,Beijing 100084,China)
出处 《电网技术》 EI CSCD 北大核心 2021年第10期3869-3876,共8页 Power System Technology
基金 南方电网公司科技项目(090000KK52190169/SZKJXM2019669)。
关键词 微网 深度强化学习 SIMULINK仿真 PQ控制 储能控制 优化策略 microgrid deep reinforcement learning Simulink PQ control energy storage control optimization strategy
  • 相关文献

参考文献13

二级参考文献220

  • 1胡晓非,罗庚玉.安徽省峰谷电价分析与展望[J].电力需求侧管理,2004,6(6):32-34. 被引量:6
  • 2汤玉东,徐诚,邹云.基于DSM的峰谷分时电价[J].电力需求侧管理,2006,8(6):11-13. 被引量:7
  • 3张剑云,孙元章.基于脆弱割集选择紧急控制地点的灵敏度分析方法[J].电网技术,2007,31(11):21-26. 被引量:13
  • 4Lasseter R H,Piagi P.Micro-gird:a Conceptual Solution[A].Proceedings of IEEE 35th Annual Power Electronics Specialists Conference[C].Aachen,Germany,2004,6,4285-4295.
  • 5Georgakisi D,Papathanassian S,Hatzizrgyriou N,et al.Operation of a Prototype Micro-grid System based on Microsources Equipped with Fast-acting Power Electronics Interfaces[A].Proceedings of IEEE 35th Annual Power Electronics Specialists Conference[C].Aachen,Germany,2004,(4):2521-2526.
  • 6Katiraei F,Iravani M R,Lehn P W.Micro-grid Autonomous Operation During and Subsequent to Islanding Process[J].IEEE Trans.on Power Delivery,2005,20(1):248-257.
  • 7Barasli S,Ceraolo M,Pelacchi P.Control Techniques of Dispersed Generators to Improve the Continuity of Electricity Supply[A].Proceeding of Power Engineering Society Winter Meeting[C].New York,NY,USA:2002,(2):789-794.
  • 8鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:937
  • 9国家能源局.国家能源局关于推进新能源微电网示范项目建设的指导意见[EB/OL].北京:国家能源局,2015[2015-09-29].http://zfxxgk.nea.gov.on/aut087/-201507/t20150722-1949.htm.
  • 10国家能源局.国家能源局关于印发配电网建设改造行动计划(2015-2020年)的通知[EB/OL].北京:国家能源局,201512015-09-29].http://zfxxgk.Nea.gov.cn/auto-84/201508/t20150831-1958.htm.

共引文献1089

同被引文献421

引证文献21

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部