期刊文献+

面向Android支付破解应用的检测方法 被引量:1

Detection Method for Android Payment Cracked Application
原文传递
导出
摘要 Android破解应用存在侵犯合法软件权益和传播恶意代码的风险。为有效检测Android平台上的支付破解应用,提出一种基于机器学习的检测方法。针对反汇编的字节码文件构建了支付语义信息调用控制流和支付数据库操作函数集,通过n-gram和重复代码子块长度统计方法构造相应特征集,最后构建带决策机制的多分类器检测模型以识别Android应用中不同的支付破解行为。实验结果表明,所提检测方法的模型检测精确率为85.24%,AUC值为0.87,与同类方法相比,对支付破解类应用的检测率有显著提高,有效解决了支付破解应用的检测问题。 Android cracked applications have the risks of infringing on legitimate software rights and spreading malicious code.To detect the payment cracked applications on Android platform,we propose a detection method based on machine learning.Based on the disassembled bytecode file,the call control flow of payment semantic information and the payment database operation function set are constructed.We use a n-gram statistical method and a repeated code sub-block length statistical method to construct the corresponding feature set,and build a multi-classifier detection model with a decision-making mechanism to identify different payment cracked behaviors in Android applications.The experimental results show that the detection accuracy rate of this model is 85.24%,and the area under curve(AUC)value is0.87.Compared with the baseline methods,the detection rate of payment cracked applications is significantly improved,which effectively solves the detection problem of payment cracked applications.
作者 汤永利 李星宇 赵宗渠 李运峰 TANG Yong-li;LI Xing-yu;ZHAO Zong-qu;LI Yun-feng(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454003,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2021年第4期95-101,共7页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61802117) 河南省高校科技创新团队项目(20IRTSTHN013) 河南理工大学创新型科研团队项目(T2018-1)。
关键词 ANDROID 支付破解 软件安全 特征提取 机器学习 Android payment cracked software security feature extraction machine learning
  • 相关文献

参考文献1

二级参考文献7

  • 1Zhou Yajin, Jiang Xuxuan. Dissecting android malware: characterization and evolution [ C ]//Security and Privacy (SP) , 2012 IEEE Symposium on. San Francisco: IEEE, 2012 : 95-109.
  • 2Mitchell T. Machine learning[ M ]. Beijing: China Ma- chine Press, 2012: 112-136.
  • 3Harrington P. Machine learning in action [ M ]. New York: Manning Publications Co Development, 2013: 62- 82.
  • 4Davis J, Goadrich M. The relationship between precision- recall and ROC curves [ C ]//Proceedings of the 23rd In- ternational Conference on Machine Learning. New York: ACM, 2006 : 233-240.
  • 5Felt A P, Chin E, Hanna S, et al. Android permissions demystified[ C] //Proceedings of the 18'h ACM Confer- ence on Computer and Communications Security. New York: ACM, 2011: 627-638.
  • 6Fei2011ah A, Anuar N B, Salleh R, et al. A review on feature selection in mobile malware detection[ J]. Digital Investigation, 2015, 13: 22-37.
  • 7Cen Lei, Gates C S, Si Luo, et al. A probabilistic dis- criminative model for android malware detection with de- compiled source code[ J]. Dependable and Secure Com- puting, IEEE Transactions on, 2015, 12(4) : 400-412.

共引文献11

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部