期刊文献+

混合噪声条件下的目标被动定位算法 被引量:4

Passive Target Positioning Algorithm for Mixed Noise
下载PDF
导出
摘要 为提高被动传感器观测噪声为含时变有色噪声、跳变噪声的混合噪声时容积卡尔曼滤波(CKF)算法的滤波精度和稳定性,提出一种自适应容积卡尔曼滤波(ACKF)算法。在ACKF算法中,在基本CKF算法基础上,采用观测重构、待定系数去相关方法,推导得到有色噪声条件下的容积卡尔曼滤波算法。针对时变有色噪声和跳变噪声导致滤波精度受损的问题,引入噪声方差在线修正及有害观测剔除的思想,进行了ACKF算法设计。仿真结果表明,与基本CKF算法相比,ACKF算法在x轴、y轴、z轴3个方向得到的被动定位精度分别提升了24.75%、32.57%和28.48%,具有更高的滤波稳定性和精度。 An adaptive cubature Kalman filter(ACKF)algorithm is proposed to improve the filtering accuracy and stability of the cubature Kalman filter(CKF)algorithm when the passive sensor measurement noise is a mixed noise containing time-varying colored noise and jumping noise.Based on the basic CKF algorithm,the measurement reconstruction and undetermined coefficient decorrelation methods are used to derive the cubature Kalman filter algorithm with colored measurement noise(CKF-CMN).For the impaired filtering accuracy caused by time-varying colored noise and jumping noise,the idea of online correction of noise variance and removal of harmful measurement is introduced,and the ACKF algorithm is designed.The simulated results show that,compared with the basic CKF algorithm,the passive positioning accuracies of ACKF algorithm on x,y,and z axes are increased by 24.75%,32.57%and 28.48%,respectively.The ACKF algorithm has higher filtering stability and accuracy.
作者 陈林秀 郝明瑞 赵佳佳 CHEN Linxiu;HAO Mingrui;ZHAO Jiajia(Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing 100074,China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2021年第9期1923-1930,共8页 Acta Armamentarii
基金 国家自然科学基金项目(61971099)。
关键词 混合噪声 容积卡尔曼滤波 自适应 被动定位 mixed noise cubature Kalman filter adaptive passive positioning
  • 相关文献

参考文献12

二级参考文献125

  • 1李晔,苏玉民,万磊,庞永杰.自适应卡尔曼滤波技术在水下机器人运动控制中的应用[J].中国造船,2006,47(4):83-88. 被引量:7
  • 2吴伟,王东进,陈卫东.密集杂波环境下多目标跟踪算法[J].现代雷达,2007,29(2):17-21. 被引量:6
  • 3Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 4Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 5Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 6Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 9Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.
  • 10Xiong K, Chan C, Zhang H S. Detection of satellite atti- tude sensor faults using the UKF. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 480-491.

共引文献212

同被引文献32

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部