期刊文献+

结合注意力机制的多策略汉语语义角色标注 被引量:1

Multi-strategy Chinese semantic role labeling combined with attention mechanism
下载PDF
导出
摘要 语义角色标注旨在标注出句子中所有与谓语相关的语义成分,是进行语义分析的基础和关键技术.使用传统的机器学习方法进行语义角色标注,需要人工设定特征,特征稀疏且工作繁琐沉重,同时传统方法对句法解析精度有较高要求,所以语义角色标注发展缓慢.针对上述情况,采取基于双向长短时记忆(BiLSTM)网络-注意力机制(attention)-条件随机场(CRF)模型进行汉语语义角色标注,同时尝试针对性引入其他资源优化模型性能.在训练阶段,将词性、依存句法特征以及短语结构句法特征组成的多线索特征组共同送入模型.经过多组对照实验论证,相比于BiLSTM-CRF模型,融合注意力机制的模型性能显著提升,并且引入的多线索特征组可以进一步提升模型性能. Semantic role labeling aims to label all semantic components related to predicates in a sentence,and it constitutes the basis and the key technology for semantic analyses.Semantic role labeling based on traditional machine learning methods requires manual feature setting.Traditional methods have endured problems of sparse features and cumbersome work.At the same time,traditional methods must meet higher requirements on the accuracy of syntactic analyses,rendering the development of semantic role labeling slow.Due to the existence of the situation mentioned above,this paper is based on the BiLSTM-attention-CRF model for Chinese semantic role labeling,and attempts to introduce other targeted resources to optimize the performance of the model.During training,a multi-clue feature group consisting of parts of speech,dependent syntactic parsing features,and phrase structure parsing features are fed into the model.After multiple groups of controlled experiments,compared with the BiLSTM-CRF model,the performance of the model fused with the attention mechanism is significantly improved.Finally,the combined multi-cue feature group can further improve the model performance.
作者 朱傲 万福成 马宁 车郭怡 ZHU Ao;WAN Fucheng;MA Ning;CHE Guoyi(Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education,Northwest Minzu University,Lanzhou 730030,China;Key Laboratory of China's Ethnic Languages and Intelligent Processing of Gansu Province,Northwest Minzu University,Lanzhou 730030,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期1019-1023,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(61762076,61602387)。
关键词 汉语语义角色标注 双向长短时记忆 条件随机场 注意力机制 依存句法分析 短语结构句法分析 Chinese semantic role labeling BiLSTM CRF attention mechanism dependency syntactic parsing phrase structure parsing
  • 相关文献

参考文献6

二级参考文献52

  • 1陈耀东,王挺,陈火旺.浅层语义分析研究[J].计算机研究与发展,2008,45(z1):321-325. 被引量:12
  • 2周国光.汉语配价语法论略[J].南京师大学报(社会科学版),1994(4):103-106. 被引量:30
  • 3刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39
  • 4刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 5袁毓林.语义角色的精细等级及其在信息处理中的应用[J].中文信息学报,2007,21(4):10-20. 被引量:45
  • 6Gildea D,Jurafsky D.Automatic Labeling of Semantic Roles[J].Computational Linguistics,2002,28(3):245-288.
  • 7Surdeanu M,Harabagiu S,Williams J,et al.Using Predicate-argument Structures for Information Extraction[C]//Proc.of the 41st Annual Meeting of the Association for Computational Linguistics.Tokyo,Japan:[s.n.],2003.
  • 8Xue Nianwen,Palmer M.Calibrating Features for Semantic Role Labeling[C]//Proc.of the Conference on Empirical Methods in Natural Language Processing.Barcelona,Spain:[s.n.],2004.
  • 9Pradhan S,Ward W,Hacioglu K,et al.Shallow Semantic Parsing Using Support Vector Machines[C]//Proc.of NAACL-HLT'04.Boston,Mass,USA:[s.n.],2004.
  • 10Fillmore, Charles J. and Collin F. Baker. FrameNet Frame Semantics Meets the Corpus [D]. Poster presentation, 74th Annual Meeting of the Linguistics Society of America, 2000.

共引文献38

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部