期刊文献+

导数非线性Schr dinger方程的爆破解

Blow-up solutions for derivative nonlinear Schr dinger equations
下载PDF
导出
摘要 研究下述导数非线性Schrodinger方程的初边值问题:iφ_(t)+αφ_(xx)=iβ|φ|^(2σ)φx-g(|φ|^(2))φ,σ1,x∈[a,b],其中α,β为实数,g(·)是实值函数.当α,β,φ0及g(s)满足一定条件时,利用守恒律和修正的virial等式,证明了爆破解的存在性.最后,得到了爆破解的渐近行为等一些性质. In this paper,we study the blow-up solutions to the following initial boundary value problem of the derivative nonlinear Schrodinger equations,iφ_(t)+αφ_(xx)=iβ|φ|^(2σ)φx-g(|φ|^(2))φ,σ1,x∈[a,b],whereα,βare real,g(·)is a real function.Under the some appropriate conditions onα,β,φ0 and g(s),we show the existence of the blow-up solutions by conservation laws and modified virial identity.Finally,we investigate asymptotic behavior and other properties of blow-up solutions.
作者 郑昊昊 李用声 Zheng Haohao;Li Yongsheng(School of Mathematics,South China University of Technology,Guangzhou 510640,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2021年第6期77-81,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11571118,11971356)。
关键词 导数非线性Schr dinger方程 爆破解 修正的virial等式 derivative nonlinear Schr dinger equation blow-up solution modified virial identity
  • 相关文献

参考文献1

二级参考文献23

  • 1Kavian, O.: A remark on the blowing up of solutiolls to the Cauchy problem for nonlinear Schrodinger equations. Tran. Am. Math. Soc., 299, 193-203 (1987).
  • 2Ozawa, T.: On the nonlinear Schrodinger equations of derivative type. Indiana University Math. J., 45(1),137-163 (1996).
  • 3Tsutsumi, M.: Nonexistence of global solutions to tile Cauchy problem for the damped nonlinear Schrodinger equations. SIAM J. Math. Anal., 15 357-366 (1984).
  • 4Cazenave, T., Weissler. F. B.: The Cauchy problem for tile critical nonlinear Schrodinger equation in H^s.Nonlinear Anal., 14, 807-836 (1990).
  • 5Ginibre, J., Velo, G.: On the class of nonlinear Schrodinger equations Ⅰ,Ⅱ. J. Functional Anal., 32, 1-32,33-71 (1979); Ⅲ. Ann. Inst. Henri Poincare, 28A, 287-316 (1978).
  • 6Tan, S. B.: Global solutions to tile evolution equations of Schrodinger type with nonlocal term. Chinese Ann. of Math., 14B(3), 279-286 (1993).
  • 7Tan, S. B., Han, Y. Q.: Long time behavior of solution for nonlinear generalized evolution equations.Chinese J. Contemp. Math., 16(2), 105-122 (1995).
  • 8Tsutsumi, M.: Nonexistence and instability of solutions of nonlinear Schrodinger equations (unpublished).
  • 9Guo. B. L., Tan, S. B.: On smooth solutions to tile initial value problem for the mixed nonlinear Schrodinger equations. Proc. R. Soc. Edinburgh, 119A. 34-45 (1991).
  • 10Tan, S. B., Zhang, L. H.: On weak solution of tile mixed nonlinear Schrodinger equations. J. Math. Anal.and Appl., 182(2), 409-421 (1994).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部