期刊文献+

复形的扩张

Extensions of complexes
下载PDF
导出
摘要 针对范畴的同调性质,研究了阿贝尔范畴上的有界复形的扩张的性质。利用阿贝尔范畴的扩张,证明了整体维数有限的阿贝尔范畴上的任意有界复形的同调维数有限,并证明了有界复形范畴中零微分复形的扩张的中间项的微分与其同调群的关系。 The properties of extensions of bounded complexes over abelian categories are studied.By the extensions of abelian categories,the homological dimension of any bounded complex is finite in case that the abelian category is of finite glob-al dimension.Let M'be the middle item of the extension of two complexes with zero differentials.Then the relation between the differentials of M'and the homology groups of the complexes are obtained.
作者 林记 LIN Ji(School of Mathematics and Statistics,Fuyang Normal University,Fuyang Anhui 236037,China)
出处 《阜阳师范大学学报(自然科学版)》 2021年第3期11-14,共4页 Journal of Fuyang Normal University:Natural Science
基金 国家自然科学基金项目(12001107) 安徽高校自然科学研究项目(KJ2019A0543)。
关键词 阿贝尔范畴 有界复形 零微分复形 同调维数 abelian categories bounded complexes complexes with zero differentials homological dimension
  • 相关文献

参考文献2

二级参考文献19

  • 1Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Amer. Math. Soc., 15(2), 497-529 (2002).
  • 2Fomin, S., Zelevinsky, A.: Cluster algebras II: Finite type classification. Invent. Math., 154(1), 63-121 (2003).
  • 3Fomin, S., Zelevinsky, A.: Cluster algebras: Notes for the CDM-03 conference. In: Current Developments in Mathematics, 2003, Int. Press, Somerville, MA, 2003, 1-34.
  • 4Buan, A., Marsh, R., Reineke, M., et al.: Tilting theory and cluster combinatorics. Adv. Math., 204(2), 572418 (2006).
  • 5Caldero, P., Keller, B.: From triangulated categories to cluster algebras II. Ann. Sci. Ecole Norm. Sup., 4eme serie, 39, 983-1009 (2006).
  • 6Assem, I., Brustle, T., Schiffier, R.: Cluster-tilted algebras as trivial extensions. Bull. London Math., 40, 151-162 (2006).
  • 7Assem, I., Brustle, T., Schiffier, R.: On the Galois coverings of a cluster-tilted algebra. J. Pure Appl. Algebra, 213(7), 1450-1463 (2009).
  • 8Buan, A., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc., 359, 323-332 (2007).
  • 9Buan, A., Marsh, R., Reiten, I.: Cluster mutation via quiver representations. Comment. Math. Helv., 83(1), 143-177 (2008).
  • 10Buan, A., Marsh, R., Reiten, I.: Cluster-tilted algebras of finite representation type. J. Algebra, 306(2), 412-431 (2006).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部