期刊文献+

基于多源遥感影像的2021年云南漾濞M_(S)6.4地震灾区建筑物信息识别与震害分析 被引量:6

Recognition of the Earthquake Damage to Buildings in the 2021 Yangbi,Yunnan M_(S)6.4 Earthquake Area Based on Multi-source Remote Sensing Images
下载PDF
导出
摘要 以无人机获取的震后区域高分辨率遥感影像、DSM数字表面模型为基础,提出多源遥感影像的建筑物震害精细化识别方法。对影像中的地物进行多尺度分割,剔除其它地物,提取出建筑物,并依据光谱、纹理、形状特征进行震后建筑物震害、结构类型以及楼层数识别。将该方法应用于2021年云南漾濞M_(S)6.4地震灾区建筑物震害识别,为灾害损失评估工作提供基础数据。结果表明,与传统的人工震害调查相比,基于多源遥感影像的建筑物信息识别方法速度快、准确率高。 Rapid identification of the earthquake damage to buildings in the earthquake-stricken area is of great significance for scientific and effective assessment of losses from earthquake disasters.Based on the high-resolution,remote-sensing images of post-earthquake field investigation obtained by UAV and digital surface model(DSM),we propose an identification method of earthquake damage to buildings based on multi-source,remote-sensing images.In the light of this method,we first do the multi-scale segmentation of the surface feature,then extract buildings’information,and weed out other features.Further,we identify the damage,structures and the floors of the buildings according to the spectrum,texture and shape of the buildings on the images.We apply our method to the identification of the damage to the buildings in the Yangbi M_(S)6.4 earthquake on 21 th,May 2021.The results show that,compared with the traditional manual investigation of the damage in the earthquake-affected areas,our method is more effective and more accurate.
作者 杜浩国 张方浩 卢永坤 林旭川 邓树荣 曹彦波 DU Haoguo;ZHANG Fanghao;LU Yongkun;LIN Xuchuan;DENG Shurong;CAO Yanbo(Yunnan Earthquake Agency,Kunming 650224,Yunnan,China;Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,Heilongjiang,China)
出处 《地震研究》 CSCD 北大核心 2021年第3期490-498,共9页 Journal of Seismological Research
基金 国家重点研发计划“地震应急全时程灾情汇聚与决策服务技术研究”(2018YFC1504505) 云南省地震局“传帮带”项目(CQ3-2021001)联合资助。
关键词 漾濞M_(S)6.4地震 建筑物震害识别 灾害损失评估 DSM数字表面模型 高分辨率影像 the Yangbi M_(S)6.4 earthquake identification of earthquake-damage to buildings assessment on the disaster losses digital surface model high-resolution image
  • 相关文献

参考文献14

二级参考文献151

共引文献169

同被引文献110

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部