期刊文献+

基于时空约束压缩感知的地震数据重建 被引量:3

Seismic data reconstruction based on space-time constraint compressed sensing
下载PDF
导出
摘要 在实际勘探中,由于环境、设备或人为因素的影响,采集的地震数据中有很多丢失的数据,严重影响了数据的解释工作。针对这一问题,根据地震数据的时空相关性,提出了一种基于时空约束压缩感知的地震数据重建方法。该方法使用内核奇异值分解(KSVD)字典学习算法训练超完备字典作为稀疏变换基,进而利用改进的稀疏自适应匹配追踪算法(SAMP)完成重建。通过初始稀疏性估计和变步长策略,减少了SAMP中收敛所需的迭代次数。利用真实的地震数据和微电阻率成像数据进行实验,将所提出的方法与压缩感知重建算法进行了比较,不仅提高了重建数据的准确性,而且缩短了执行时间。 In actual exploration, due to the influence of environment, equipment or human factors, there are a lot of missing data in the seismic data collected, which seriously affects the data interpretation work. Aiming at this problem, according to the space-time correlation of seismic data, a method of seismic data reconstruction based on space-time constrained compressed sensing is proposed. In this method, an over-complete dictionary as a sparse transform basis is trained using kernel singular value decomposition(K-SVD) dictionary learning algorithm. The reconstruction is accomplished using an improved sparsity of adaptive matching pursuit(SAMP). By incorporating an initial sparsity estimation step and adopting a variable step size strategy, the number of iterations needed for convergence in SAMP can be significantly reduced. Using real seismic data and micro-resistivity imaging data, the proposed novel method is compared with state-of-the-art compressive sensing reconstruction algorithms. The experimental results show that the accuracy of the reconstructed data is significantly improved, and the execution time is also reduced.
作者 石敏 朱震东 路昊 朱登明 周军 Shi Min;Zhu Zhendong;Lu Hao;Zhu Dengming;Zhou Jun(Control and Computer Engineering Institute,North China Electric Power University,Beijing 102206;Prospective Research Laboratory,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;China Petroleum Logging Co.Ltd,Xi’an 710077)
出处 《高技术通讯》 CAS 2021年第9期925-933,共9页 Chinese High Technology Letters
基金 国家科技重大专项(2017ZX05019005)资助项目。
关键词 地震数据重建 时空相关性 压缩感知 字典学习 seismic data reconstruction space-time correlation compressed sensing dictionary learning
  • 相关文献

参考文献7

二级参考文献99

共引文献151

同被引文献38

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部