摘要
基于领域自适应技术的人群计数方法不依赖标注样本,是一种重要的无监督学习策略,但是现有方法易造成头部区域信息丢失和背景区域过度估计.针对以上问题,提出了一种面向跨域人群计数的头部感知密度适应网络.该方法由头部感知风格迁移模块和密度适应模块组成.其中,风格迁移模块利用源域密度图生成头部掩膜和背景掩膜,并以此设计了基于头部感知的风格迁移损失函数,以防止风格迁移后头部区域与背景区域的混淆.同时,密度适应模块利用鉴别器进一步将源域与目标域的特征映射到同一个隐空间,增强了源域密度图和目标域密度图分布的一致性.整个网络以端到端的方式同时训练风格迁移和密度适应模块,使模块相互迭代学习,共同受益.在合成数据集GCC和3个真实数据集上的实验结果表明,与现有几种跨域算法对比的结果表示,该方法的平均绝对误差降低9%,均方误差降低7%;在无标注的目标场景实现了鲁棒的跨域人群计数.
The crowd counting based on the domain adaptive method is an effective unsupervised learning strategy,which does not rely on labeled samples.However,the existing methods easily cause information loss in the head region or over counting errors in the background region.A head-aware density adaptive network(HADAN)is proposed for cross-domain crowd counting to solve these problems.In style transform part,the ground-truth of the source domain dataset is firstly used to generate the mask of the head area and background area,and then a head-aware cycle loss based on the mask is designed to prevent the confusion between the head area and the background area during the style transform process.Simultaneously,the den-sity adaptation part further maps the features of both the source domain and the target domain to the same latent space using the discriminator,enhancing the consistency of the density map distribution.Proposed network trains style transfer and density adaptation parts in an end-to-end way,and they learn iteratively and benefit from each other.The experimental results on the synthetic data set GCC and three real-world datasets show that the MAE value of the algorithm is reduced by 9%on average,and the MSE value is reduced by 7%.Proposed method achieves robust cross-domain crowd counting in unlabeled target scenes.
作者
蔡一庆
马振伟
王庭枢
吕长虹
王长波
何高奇
Cai Yiqing;Ma Zhenwei;Wang Tingshu;Lyu Changhong;Wang Changbo;He Gaoqi(School of Computer Science and Technology,East China Normal University,Shanghai 200062;School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237;Shanghai Starriver Bilingual School,Shanghai 201108;School of Mathematical Sciences,East China Normal University,Shanghai 200241)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021年第10期1514-1523,共10页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(62072183,62002121)
上海市自然科学基金(19ZR1415800)
上海市科学技术委员会项目(19JC1420100,21511100700,19DZ2301100).
关键词
人群计数
无监督学习
领域适应
风格迁移
密度图
crowd counting
unsupervised learning
domain adaptation
style transfer
density map