期刊文献+

基于Z值及改进模型对医药制造业上市公司客户选择评价的研究 被引量:1

Research on Customer Selection Evaluation of Listed Pharmaceutical Manufacturing Companies Based on Z Value and Improved Model
下载PDF
导出
摘要 医药制造行业是高技术密集的行业,具有高投入、高产出、高风险、高技术的特点,被国家作为重点产业。因行业发展速度较快,医药行业企业普遍需要信贷资金支持,商业银行对医药制造业行业客户选择的研究十分必要。论文采用Z值模型及Z值改进模型对2015-2019年国内168家上市医药公司的数据进行分析、研究,得知Z值改进模型更适用于医药制造业客户选择,并提出高度警惕高负债企业、加大创新型企业支持力度等5条医药制造业上市公司客户选择建议。 Pharmaceutical manufacturing industry is a high-tech intensive industry,with the characteristics of high investment,high output,high risk and high technology,and is regarded as a key industry by the state.Due to the rapid development of the industry,pharmaceutical industry enterprises generally need credit fund support,so it is very necessary for commercial banks to study the customer selection of pharmaceutical manufacturing industry.This paper uses Z value model and improved Z value model to analyze and study the data of 168 domestic listed pharmaceutical companies from 2015 to 2019.It is concluded that the improved Z value model is more suitable for customer selection in pharmaceutical manufacturing industry,and five suggestions on customer selection for listed pharmaceutical manufacturing companies,such as highly alert to high-debt enterprises and increasing support for innovative enterprises,are put forward.
作者 孙庆文 卢刚 SUN Qing-wen;LU Gang(Hebei University of Economics and Business,Shijiazhuang 050061,China)
机构地区 河北经贸大学
出处 《中小企业管理与科技》 2021年第30期85-87,共3页 Management & Technology of SME
关键词 客户选择 医药制造业 Z值模型 Z值改进模型 customer selection pharmaceutical manufacturing industry Z value model improved Z value model
  • 相关文献

参考文献5

二级参考文献42

  • 1宋瑞霖.我国制药企业在激烈市场竞争中的战略分析[J].中国药房,2004,15(11):650-653. 被引量:5
  • 2郭广忠.浅析完善企业财务危机预警系统[J].山西广播电视大学学报,2005,10(6):75-76. 被引量:2
  • 3阮桂海 蔡建瓴.SPSS for Windows高级应用教程[M].北京:电子工业出版社,1998..
  • 4庾莉萍.我国化学原料药生产与出口形势[J].精细化工原料及中间体,2007(9):25-26. 被引量:2
  • 5潘爱香,财务报表分析,1999年
  • 6阮桂海,SPSS for Windows高级应用教程,1998年
  • 7Fernando G, Vicente G, Francisco G. Credit risk management: A multicriteria approach to assess creditworthiness[J]. Mathematical and Computer Modelling, 2013, 57(7-8): 2009-2015.
  • 8Funda Y. Macroeconomic modelling of credit risk for banks[J]. Ocedia — Social and Behavioral Sciences, 2014, 109(8): 784-793.
  • 9Mathieu B. Contagion effect on bond portfolio risk measures in a hybrid credit risk model[J]. Finance Research Letters, 2014, 11(2): 131-139.
  • 10Adnan K. Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes[J]. Expert Systems with Applications, 2010, 37(9): 6233-6239.

共引文献225

同被引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部