摘要
Genome editing by clustered regularly interspaced short palindromic sequences(CRISPR)/CRISPRassociated protein 9(Cas9)has revolutionized functional gene analysis and genetic improvement.While reporter-assisted CRISPR/Cas systems can greatly facilitate the selection of genome-edited plants produced via stable transformation,this approach has not been well established in seed crops.Here,we established the seed fluorescence reporter(SFR)-assisted CRISPR/Cas9 systems in maize(Zea mays L.),using the red fluorescent Ds RED protein expressed in the endosperm(En-SFR/Cas9),embryos(Em-SFR/Cas9),or both tissues(Em/En-SFR/Cas9).All three SFRs showed distinct fluorescent patterns in the seed endosperm and embryo that allowed the selection of seeds carrying the transgene of having segregated the transgene out.We describe several case studies of the implementation of En-SFR/Cas9,Em-SFR/Cas9,and Em/En-SFR/Cas9 to identify plants not harboring the genomeediting cassette but carrying the desired mutations at target genes in single genes or in small-scale mutant libraries,and report on the successful generation of single-target mutants and/or mutant libraries with En-SFR/Cas9,Em-SFR/Cas9,and Em/En-SFR/Cas9.SFR-assisted genome editing may have particular value for application scenarios with a low transformation frequency and may be extended to other important monocot seed crops.
基金
supported by the National Science Foundation of China(Nos 31771808 and 32001551)
National Key R&D Program of China(No.2020YFE0202300)
the Key Area Research and Development Program of Guangdong Province(No.2018B020202008)
the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(S2021ZD03)。