期刊文献+

基于3阶模糊张量的广义加权几何算子及其应用

Generalized Weighted Geometric Operator Based on the Third-Order Fuzzy Tensor with Its Application
下载PDF
导出
摘要 针对具有高维数据特征的多属性群决策问题,定义了3阶模糊张量,建立了基于3阶模糊张量的广义加权几何算子,探索了该类算子的性质,提出了一种解决多属性群决策问题的新方法,并通过算例验证了该方法的有效性。 In view of the flaw of the multiple attribute decision making with high-dimension data characteristics,the third-order fuzzy tensor has thus been defined,with the generalized weighted geometric(GWG)operator based on third-order fuzzy tensor subsequently established.By exploring the properties of GWG operator,a novel method is proposed to solve the multiple attribute decision making problems,with examples provided to verify the efficiency of the proposed method.
作者 方世林 邓胜岳 吴海燕 FANG Shilin;DENG Shengyue;WU Haiyan(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang Hunan 414006,China;College of Science,Hunan University of Technology,Zhuzhou Hunan 412007,China;No.2 Middle School of Zhuzhou Hunan,Zhuzhou Hunan 412007,China)
出处 《湖南工业大学学报》 2021年第6期79-83,共5页 Journal of Hunan University of Technology
基金 湖南省自然科学基金资助项目(2020JJ4264) 湖南省教育厅科学研究优秀青年项目(20B180)。
关键词 3阶模糊张量 广义加权几何算子 多属性决策 群决策 third-order fuzzy tensor generalized weighted geometric operator(GWG) multiple attribute decision making group decision making
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部