期刊文献+

基于压缩感知的MIMO-OFDM系统自适应信道估计 被引量:1

Compressed Sensing Based Adaptive Channel Estimation of MIMO-OFDM System
下载PDF
导出
摘要 针对超密集组网中导频复用将产生导频干扰,严重影响移动用户下行链路信道估计准确性的问题,提出了一种使用短导频的幂函数稀疏度自适应匹配追踪(Power Sparsity Adaptive Matching Pursuit,PSAMP)算法。该算法由稀疏度预估计和追踪重构两部分构成。首先通过幂函数试探得到一个略小于真实稀疏度的预估值,再通过压缩采样匹配追踪重构信号,改善估计结果;若不能成功重构,则逐渐增加信号原子数量。仿真结果表明,相较于传统自适应压缩感知重建算法,所提的PSAMP算法在高信噪比区域具有更好的信道估计性能。 The accuracy of downlink channel estimation in cellular systems can be severely affected by pilot signal interference resulted from pilot reuse in ultra-dense network(UDN).In light of this,a power function sparsity adaptive matching pursuit(PSAMP)algorithm for short signals composed of sparsity pre-estimation and pursuit reconstruction is proposed.At first,an estimated value slightly smaller than the real sparsity is obtained through a trial power function.On this basis,signals are reconstructed through compressive sampling matching pursuit to improve the estimated result.The number of signal atoms will be increased gradually if the reconstruction fails.The simulation results show that the proposed PSAMP algorithm presents more satisfactory channel estimation performance in the area of high signal-to-noise ratio than the traditional adaptive compressive sensing reconstruction algorithm.
作者 李姣军 蒋扬 邱天 左迅 杨凡 LI Jiaojun;JIANG Yang;QIU Tian;ZUO Xun;YANG Fan(School of Electrical and Electronic Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《电讯技术》 北大核心 2021年第10期1284-1290,共7页 Telecommunication Engineering
基金 重庆市基础科学与前沿技术研究专项基金资助项目(cstc2019jcyj-msxmX0233)。
关键词 超密集网 MIMO-OFDM系统 自适应信道估计 压缩感知 幂函数试探 ultra-dense network MIMO-OFDM system adaptive channel estimation compressed sensing power trail
  • 相关文献

参考文献2

二级参考文献15

  • 1D L Donoho.Compressed sensing[J].IEEE Trans Info Theory,2006,52(4):1289-1306.
  • 2E J Candès,J Romberg,T Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Info Theory,2006,52(2):489-509.
  • 3E J Candès,T Tao.Near-optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425.
  • 4E J Candès,T Tao.Decoding by linear programming[J].IEEE Trans Info Theory,2005,51(12):4203-4215.
  • 5S S Chen,D L Donoho,M A.Saunders.Atomic decomposition by basis pursuit[J].SIAM Rev,2001,43(1):129-159.
  • 6S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.
  • 7J A Tropp.Greed is good:Algorithmic results for sparse approximation[J].IEEE Trans Info Theory,2004,50(10):2231-2242.
  • 8J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Info Theory,2007,53(12):4655-4666.
  • 9D L Donoho,Y Tsaig,I Drori,etc.Sparse solution of underdetermined linear equations by stagewise Orthogonal Matching Pursuit .2007,http://www-stat.stanford.edu/-donoho/Reports/2006/StOMP-20060403.pdf.
  • 10D Needell,R Vershynin.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit .http://arxiv.org/abs/0707.4203,2007-7-28/2008-3-15.

共引文献66

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部