期刊文献+

一种EfficientNet网络下雾天道路能见度估测方法 被引量:3

A Road Visibility Estimation Method Based on Efficientnet Network in Foggy Weather
下载PDF
导出
摘要 针对传统的激光雷达能见度仪对雾天能见度检测存在成本高和覆盖率低的问题,提出一种EfficientNet网络模型对道路摄像头拍摄雾天图像进行能见度实时估测的方法。该方法首次将EfficientNet网络应用于雾天道路能见度的估测。首先对道路摄像头拍摄的雾天视频进行定时抽帧采集图像,然后在深度学习框架下使用优化的EfficientNet深度学习网络进行训练分类,最后用训练好的网络对验证集进行检验。实验结果显示,EfficientNet分类网络对能见度分类的平均准确率达96%,平均准确率高于VGG16、Darknet53、ResNet50对照网络,能够实现大雾天气下道路能见度的估测。 Aiming at the problems of high cost and low coverage in foggy visibility detection with traditional lidar visibility meters,an EfficientNet network model is proposed to estimate the visibility of foggy weather images taken by road cameras in real time.This method applies the EfficientNet network to the visibility estimation of foggy roads for the first time.First,the foggy video taken by the road camera is timed to collect images,and then the optimized EfficientNet deep learning network is used for training and classification under the deep learning framework.The experimental results show that the EfficientNet classification network has an average accuracy rate of 96%for visibility classification,which is higher than the VGG16,Darknet53,and ResNet50 comparison networks,which can realize the estimation of road visibility in foggy weather.
作者 王年涛 王淑青 张鹏飞 顿伟超 黄剑锋 WANG Niantao;WANG Shuqing;ZHANG Pengfei;DUN Weichao;HUANG Jianfeng(School of Electrical and Electronic Engin.,Hubei Univ.of Tech.,Wuhan 430068,China)
出处 《湖北工业大学学报》 2021年第5期42-46,共5页 Journal of Hubei University of Technology
关键词 EfficientNet 雾天图像 图像分类 能见度 Efficientnet fog image image classification visibility
  • 相关文献

参考文献5

二级参考文献38

  • 1曹晓光,徐琳,郁文霞.基于角点检测的高精度点匹配算法[J].仪器仪表学报,2006,27(z2):1269-1271. 被引量:13
  • 2CAVALLO V, OLOMB M, DORE J. Distance perception of vehicle rear lights in fog[J]. Hum. Factors, 43(3): 442-451.
  • 3DUMONT E, CAVALLO V. Extended photometric model of fog effects on road vision[J]. Transp. Res. Rec. J. Transp. Board, 2004,1862:77-81.
  • 4HAUTIERE N, TAREL J P, AVENANT J, et al. Automatic fog detection and estimation of visibility distance through use of an onboard camera[J]. Machine Vision and Applications Journal, April 2006,17(1 ):8-20.
  • 5JOURLIN M, PINOLI J C. Logarithmic image processing[J]. Advances in Imaging and Electron Physics, vol. 2001,115:129-196.
  • 6CAVALLO D V. Extended photometric model of fog effects on road vision[J]. Transp. Res. Board, 2004,8(1): 77-81.
  • 7HAUTIERE N, LABAYRADE R. Real-time disparity contrast combination for onboard estimation of the visibility distance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006,7(2):201-212.
  • 8BUSH C, DEBES E. Wavelet transform for analyzing fog visibility[J]. IEEE Intell. Syst., 1998,13(6):66-71.
  • 9ZHENG Y Y, ZHOU E TIAN X, et al. Lightweight content-adaptive coding in joint analyzing-encoding framework[J]. Consumer Electronics, IEEE Transactions, 2008, 54(2):614 - 622.
  • 10YU H. Joint image registration and super-resolution using nonlinear least squares method[C]. IEEE International Conference, Honolulu Hawaii, USA, 2007(1).561-564.

共引文献95

同被引文献31

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部