期刊文献+

基于暗通道先验的图像去雾方法 被引量:2

Image Defogging Method Based on Dark Channel Prior
下载PDF
导出
摘要 针对采用暗通道先验还原图像时引起分界区域出现块效应的现象,采用软抠图对透射率进行优化处理,提出一种改进的暗通道先验图像去雾方法。基于大津阈值法分割有雾图像中的非天空与天空区域,然后估算天空区域的大气光值,通过梯度引导滤波法细化非天空区域的初始透射率,进而复原得到清晰的去雾图像。实验表明,该方法有效解决了暗通道去雾模型存在的大气光值估算不准、天空区域颜色失真等问题,能够获取更为清晰的去雾图像。 Aiming at the obvious blocking phenomenon in the edge region where the scene depth changes in the dark channel prior restoration image,soft matting algorithm is adopted to optimize the transmittance,and an image defogging method based on dark channel prior improvement is proposed.The Otsu algorithm is used to divide the sky and non-sky areas in the outdoor image,the atmospheric light value is reasonably estimated by using the accurately divided sky area,and the initial transmission rate is refined by gradient guide filtering in the non-sky area,and the clear demisting image is obtained by the atmospheric scattering model.Experiments show that the method,on the basis of retaining the original dark channel defogging method,effectively solves the problems of inaccurate estimate of atmospheric light value,color distortion in the sky area,and obtains a clearer defogging image.
作者 任佳兴 白爽 曹睿 曲直 蔡希彪 曹玉东 REN Jia-xing;BAI Shuang;CAO Rui;QU Zhi;CAI Xi-biao;CAO Yu-dong(School of Electronics&Information Engineering,Liaoning University of Technology,Jinzhou 121001,China;School of Automation and Electrical Engineering,Dalian Jiaotong University,Dalian 116028,China)
出处 《辽宁工业大学学报(自然科学版)》 2021年第5期317-321,324,共6页 Journal of Liaoning University of Technology(Natural Science Edition)
基金 国家自然科学基金项目(61772171)。
关键词 软抠图 OTSU 暗通道先验 图像去雾 soft matting Otsu dark channel prior image defogging
  • 相关文献

参考文献5

二级参考文献37

  • 1刘楠,程咏梅,赵永强.基于加权暗通道的图像去雾方法[J].光子学报,2012,41(3):320-325. 被引量:23
  • 2He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Florida, America: IEEE, 2009:1956-1963.
  • 3Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. South Carolina, America: IEEE, 2000: 598-605.
  • 4Nayar S K, Narasimhan S G. Vision in bad weather[C]//Proceedings of IEEE International Conference on Computer Vision. Kerkira, Greece: IEEE, 1999: 820-825.
  • 5Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hawaiian Islands, America: IEEE, 2001:325-330.
  • 6Shwartz S, Namer E, Schechner Y Y. Blind haze separateion[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, America: IEEE, 2006: 1984-1991.
  • 7Kopf J, Neubert B, Chen B, et al. Deep photo: model-based photograph enhancement and viewing[C]//Proceedings of ACM SIGGRAPH Asia. Suntec City: ACM, 2008:1-10.
  • 8Tan R. Visibility in bad weather from a single image[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Alaska, America: IEEE, 2008:2201-2208.
  • 9Tarel J P. Fast visibility restoration from a single color or gray level image[C]//Proceedings of IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 2012-2208.
  • 10Wang G, Ren G, Jiang L. Single image dehazing algorithm based on sky region segmentation[J]. Journal of Information Technology, 2013, 12(6):1168-1175.

共引文献95

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部