期刊文献+

自适应上下文感知的目标追踪方法

Adaptive context-aware target tracking method
下载PDF
导出
摘要 针对相关滤波方法容易受到背景干扰导致跟踪漂移的问题,提出自适应上下文感知图像跟踪方法.为了减少背景干扰,选取离目标位置远的高响应区域为自适应上下文区域,赋予该区域自适应的低响应值.根据上下文区域与目标区域响应的相对差值,给上下文区域自适应的惩罚因子,使得该算法具有更好的鲁棒性.该算法在OTB2013、OTB2015及Temple-Color128标准数据集上都展现了优秀的跟踪性能,OTB2015的重叠率精度达到61.53%,超过大部分已有的优秀算法,特别是在背景混叠及部分遮挡的情况下有着更卓越的表现.该算法的平均跟踪速度为24.5帧/s,实时性较好. An adaptive context-aware target tracking method was proposed aiming at the problem that the correlation filtering methods were easily interfered by background,which led to tracking drift.The high response area far from the target position was selected as the adaptive context area in order to reduce the background interference.Then the adaptive low response value was assigned to the area.The penalty factor was adaptively given to the context area according to the relative difference of response value between the context area and the target area,which made the algorithm more robust.The algorithm showed excellent tracking performance on OTB2013,OTB2015 and Temple-Color128 benchmark.The overlapping rate accuracy of OTB2015 was 61.53%,which was superior to most existing excellent algorithms.The algorithm performed better especially in the case of background clutter and partial occlusion.The average tracking speed of the algorithm was 24.5 frames per second,and the algorithm had a good real-time effect.
作者 柏昀旭 陆新江 骆锐 BAI Yun-xu;LU Xin-jiang;LUO Rui(College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;Hunan Industry Polytechnic,Changsha 410083,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第10期1834-1846,共13页 Journal of Zhejiang University:Engineering Science
基金 国家重点研发计划资助项目(2018YFB1308202) 国家自然科学基金资助项目(52075556) 湖南省杰青资助项目(2019JJ20030) 湖南省高新技术产业科技创新引领计划资助项目(2020GK4097) 湖南省教育厅科学研究资助项目(12B035).
关键词 相关滤波 目标追踪 自适应上下文感知 背景干扰 跟踪漂移 correlation filtering target tracking adaptive context-aware background interference tracking drift
  • 相关文献

参考文献3

二级参考文献27

  • 1周猛,李钢.一种具有抗噪声干扰的图像轮廓跟踪算法的研究[J].计算机技术与发展,2006,16(9):21-23. 被引量:6
  • 2周丰乐,徐向民,肖跃,周娇.一种新的二值图像目标轮廓跟踪算法[J].微计算机信息,2007,23(02X):259-261. 被引量:17
  • 3H Volz Pavlidis T. Algorithms for Graphics and Image Pro- cessing[ M ]. Berlin-Heidelberg-New York, 1983.
  • 4Dong Liju, Yu Ge, Ogunbona P. An Efficient herative Algo- rithm for Image Thresholding [ J ]. Pattern Recognition Let- ters ,2008 ,29 (9) :1311 - 1316.
  • 5Nummiaro K, Koller M E, Gool L V. An adaptivecolor-based particle filter[ J]. Image and Vision Computing,2003,21 ( 1 ) :99 - 110.
  • 6Shan C, Wei Y, Tan T, et al. Real time hand tracking by combining particle filtering and mean shift[ C]//Proceedings of the 6th IEEE In- ternational Conference on Automatic Face and Gesture Recognition, 2004:669 - 674.
  • 7Cheng Y. Mean shift, mode seeking, and clustering[ J ]. I EEE Transac- tions on Pattern Analysis and Machine Intelligence, 1995,17 ( 8 ) :790 - 799.
  • 8Comaniciu D, Ramesh V, Meet P. Kernel-based object tracking [ J ]. IEEE Trans on Patten Analysis and Machine intelligence, 2003,25 (5) :564 -575.
  • 9Yizong Cheng. Mean Shift mode Seeking and Clustering[ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1995,17 (8) 6 - 10.
  • 10Dalai N ,Triggs B. Histograms of oriented gradients for human detection [ C]. Computer Society Conference on Computer Vision and Pattern Recognition,2005 : 886 - 893.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部