期刊文献+

面向工业平稳/非平稳复杂系统的在线故障监测技术 被引量:2

On-line fault monitoring technology for industrial stationary/nonstationary complex system
下载PDF
导出
摘要 针对复杂系统中关键性能指标(KPI)相关故障检测方法检测精度低的问题,提出基于双层改进潜结构投影(DL-IPLS)的KPI相关故障检测方法.利用协整分析和主元分析建立底层模型,对非平稳和平稳变量进行特征提取.将提取的信息进行融合,建立改进潜结构投影的上层模型,根据融合信息对KPI的贡献进行空间分解.在2个正交子空间中设计统计量,实现KPI相关故障的在线监测.田纳西-伊斯曼过程和青霉素发酵过程的仿真结果表明,在面向工业平稳和非平稳复杂工业系统检测时,所提方法有效提高了KPI相关故障的检测率,降低了KPI无关故障的误报率. A KPI related fault detection method based on double-layer improved projection to latent structures(DL-IPLS)was proposed in view of the low detection accuracy of key performance indicators(KPI)related fault detection methods in complex systems.The underlying model was established by using cointegration analysis and principal component analysis in order to extract the features of non-stationary and stationary variables.Then the extracted information was fused to establish the upper model of improved projection to latent structures.Statistics were designed in two orthogonal subspaces to realize on-line monitoring of KPI related faults.The simulation results of Tennessee-Eastman process and penicillin fermentation process show that the proposed method can effectively improve the detection rate of KPI related faults for industrial stationary and non-stationary complex industrial systems,and reduce the false alarm rate of KPI independent fault.
作者 孔祥玉 王晓兵 李红增 罗家宇 KONG Xiang-yu;WANG Xiao-bing;LI Hong-zeng;LUO Jia-yu(Department of Missile Engineering,Rocket Force University of Engineering,Xi’an 710000,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第10期1856-1866,共11页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61673387,61833016) 陕西省自然科学基金资助项目(2020JM-356).
关键词 数据驱动 协整分析 改进潜结构投影 关键性能指标 过程监控 故障检测 data driven cointegration analysis improved projection to latent structures key performance indicator process monitoring fault detection
  • 相关文献

参考文献4

二级参考文献33

  • 1王正帅,邓喀中.概率积分法参数辨识的多尺度核偏最小二乘回归方法[J].岩石力学与工程学报,2011,30(S2):3863-3870. 被引量:12
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3颜学峰.基于径基函数-加权偏最小二乘回归的干点软测量[J].自动化学报,2007,33(2):193-196. 被引量:10
  • 4VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K., et al. A review of process fault detection and diagnosis part I: Quantitative model based methods [J]. Computers and Chemical Engineering, 2003, 27(3): 293-311.
  • 5VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N. A review of process fault detection and diagnosis part II: Qualitative models and search strategies [J]. Computers and Chemical Engineering, 2003, 27(3): 313-326.
  • 6VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N, et al. A review of process fault detection and diagnosis part III: Process history based methods [J]. Computers and Chemical Engineering, 2003, 27(3): 327-346.
  • 7QIN S J. Survey on data driven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220-234.
  • 8SHEN Y, STEVEN X D, ADEL H, et al. A comparison study of basic data driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of Process Control, 2012, 22(9): 1567-1581.
  • 9LIN L, HONGYE S, BAOFEN Z, et al. Generalized convexity based inexact projection method for multiple kernel learning [J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(4): 1825-1835.
  • 10YU J, QIN S J. Multimode process monitoring with Bayesian inference based finite Gaussian mixture models [J]. American Institute of Chemical Engineers, 2008, 54(7): 1811-1829.

共引文献48

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部