摘要
针对复杂系统中关键性能指标(KPI)相关故障检测方法检测精度低的问题,提出基于双层改进潜结构投影(DL-IPLS)的KPI相关故障检测方法.利用协整分析和主元分析建立底层模型,对非平稳和平稳变量进行特征提取.将提取的信息进行融合,建立改进潜结构投影的上层模型,根据融合信息对KPI的贡献进行空间分解.在2个正交子空间中设计统计量,实现KPI相关故障的在线监测.田纳西-伊斯曼过程和青霉素发酵过程的仿真结果表明,在面向工业平稳和非平稳复杂工业系统检测时,所提方法有效提高了KPI相关故障的检测率,降低了KPI无关故障的误报率.
A KPI related fault detection method based on double-layer improved projection to latent structures(DL-IPLS)was proposed in view of the low detection accuracy of key performance indicators(KPI)related fault detection methods in complex systems.The underlying model was established by using cointegration analysis and principal component analysis in order to extract the features of non-stationary and stationary variables.Then the extracted information was fused to establish the upper model of improved projection to latent structures.Statistics were designed in two orthogonal subspaces to realize on-line monitoring of KPI related faults.The simulation results of Tennessee-Eastman process and penicillin fermentation process show that the proposed method can effectively improve the detection rate of KPI related faults for industrial stationary and non-stationary complex industrial systems,and reduce the false alarm rate of KPI independent fault.
作者
孔祥玉
王晓兵
李红增
罗家宇
KONG Xiang-yu;WANG Xiao-bing;LI Hong-zeng;LUO Jia-yu(Department of Missile Engineering,Rocket Force University of Engineering,Xi’an 710000,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021年第10期1856-1866,共11页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(61673387,61833016)
陕西省自然科学基金资助项目(2020JM-356).
关键词
数据驱动
协整分析
改进潜结构投影
关键性能指标
过程监控
故障检测
data driven
cointegration analysis
improved projection to latent structures
key performance indicator
process monitoring
fault detection