摘要
Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health.In this study,inorganic aluminosilicate coatings prepared by combining metakaolin,silica fume,NaOH,and H_(2)O were applied to the surfaces of wood-based panels to obstruct formaldehyde release.The Si/Al,Na/Al,and H_(2)O/Na_(2)O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings.Results showed that the cracks in the coatings gradually disappeared and the formaldehyde resistance rates of the barrier increased as the Si/Al molar ratio was increased from 1.6 to 2.2.This value also increased as the Na/Al molar ratio was increased from 0.9 to 1.2 because of the improvement of the degree of polymerization.As the H_(2)O/Na_(2)O molar ratio was increased from 12 to 15,the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde resistance rate.When the Si/Al,Na/Al,and H_(2)O/Na_(2)O molar ratios were 2.2,1.2,and 12,respectively,the inorganic aluminosilicate coating showed good performance as a formaldehyde-resistant barrier and its formaldehyde resistance rate could reach up to 83.2%.
基金
financially supported by the National Key Research and Development Program of China(Nos.2016 YFC0700607,2017YFB0304305,and 2016YFC0700901)
the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-20-006A3).