期刊文献+

基于韦伯模型的柴油机燃烧控制模型与一维仿真 被引量:2

Diesel Engine Combustion Control Model Based on Wiebe Expression and One-dimensional Simulation
下载PDF
导出
摘要 为了实现对高压共轨柴油机燃烧的精确控制,达到节能减排、缸内高效燃烧的目的,采用韦伯方程对高压共轨柴油机试验数据进行分析,利用匹配试验值和计算值的方式确定韦伯方程,根据燃烧效率因数(a)和燃烧品质指数(m)分别初步建立对应的韦伯方程进行计算。并利用一维分析软件,对基于韦伯方程的高压共轨柴油机燃烧过程控制进行仿真试验,所得到的稳态仿真模型试验结果与实验取得的稳态真实试验值进行对比分析和模型校准,结果表明一维模型的准确性良好,可成为实现燃烧过程控制基础。 In order to achieve precise control of the combustion of high-pressure common rail diesel engines,achieve the purpose of energy saving,emission reduction and high-efficiency combustion in the cylinder,the Wiebe expression is used to analyze the experimental data of high-pressure common rail diesel engines.Determine the Wiebe expression by matching test values and calculated values.According to the combustion efficiency factor(a)and combustion quality index(m),the corresponding Wiebe equations are initially established for calculation.The combustion process control of high-pressure common rail diesel engine based on the Wiebe expression is simulated by using one-dimensional analysis software.The steady-state simulation model test results are compared and analyzed with the steady-state real test values obtained in the experiment to calibrate model.The results show that the accuracy of one-dimensional model is great,which can be the basis for realizing the control of the combustion process.
作者 李鹏宇 王新校 栾军山 王贺春 庄安邦 LI Peng-yu;WANG Xin-xiao;LUAN Jun-shan;WANG He-chun;ZHUANG An-bang(College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China;Weichai Power,Weifang 261000,China)
出处 《内燃机与配件》 2021年第21期5-8,共4页 Internal Combustion Engine & Parts
关键词 内燃机 燃烧过程控制 韦伯方程 参数确定 模型校准 diesel engine combustion process control wiebe expression parameter determination model calibration
  • 相关文献

参考文献3

二级参考文献30

  • 1黄连忠,吴桂涛,尹自斌,孙培廷.神经网络在船舶柴油机NO_x排放特性预测中的应用[J].哈尔滨工程大学学报,2007,28(1):6-10. 被引量:10
  • 2冯国胜,杨绍普,程京平.基于神经网络的柴油机性能建模[J].内燃机学报,2005,23(2):182-186. 被引量:10
  • 3ZHANG Qingning, PENNYCOTI" A, BRACE C J. A review of parallel and series turbocharging for the diesel engine [ J ]. Journal of Automobile Engineering, 2013, 227(12) : 1723- 1733.
  • 4WAHLSTROM J, LARS E, NIELSEN L. EGR-VGT control and tuning for pumping work minimization and emission con- trol[J]. IEEE Transactions on Control Systems Technology, 2010, 18(4) : 993-1003.
  • 5OH B, LEE M, PARK Y, et al. VGT and EGR control of common-rail diesel engines using an artificial neural network [J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(1) : 012801.
  • 6KANG Jun, MENG Wenjun, ABRAHAM A, et al. An a- daptive PID neural network for complex nonlinear system control[J]. Neurocomputing, 2014, 135: 79-85.
  • 7WAHLSTROM J, ERIKSSON L. Output selection and its implications for MPC of EGR and VGT in Diesel engines [J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 932-940.
  • 8Fadila Maroteaux, Charbel Saad. Diesel engine combus- tion modeling for hardware in the loop application: Effects of ignition delay time model [J]. Energy, 2013, 57: 641-652.
  • 9Kosmadakis G M, Rakopoulos D C. Investigation of nitric oxide emission mechanisms in a SI engine fueled with methane/hydrogen blends using a research CFD code[J]. International Journal of Hydrogen Energy, 2015, 40(43) : 15088-15104.
  • 10Michele Battistoni, Francesco Mariani, Francesco Risi, et al. Combustion CFD modeling of a spark ignited optical access engine fueled with gasoline and ethanol [J]. Energy Procedia, 2015, 82: 424-431.

共引文献27

同被引文献49

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部