摘要
针对大规模电动汽车接入配电网对空间负荷预测的影响,论文提出一种考虑电动汽车充电负荷时空分布的城市配电网空间负荷预测方法。先根据各类车型充电方式与出行特点对电动汽车进行分类;其次,根据居民出行调研统计数据对电动汽车出行规律进行概率分布函数的拟合;然后,构建电动汽车出行链模型,通过蒙特卡洛方法计算得到不同区域和不同时间内充电负荷。最后,基于某地区实际数据,得到一天内不同功能小区的空间负荷预测值,为未来城市配电网的规划提供参考。
In view of the influence of large-scale electric vehicle access to the distribution network on spatial load prediction,this paper proposes a spatial load prediction method for urban distribution network considering the spatial and temporal distribution of electric vehicle charging load.Firstly,electric vehicles are classified according to charging mode and travel characteristics of various types of vehicles.Secondly,the probability distribution function is fitted to the travel rules of electric vehicles according to the travel survey and statistical data of residents.Then,the model of electric vehicle travel chain is constructed,and the charging load in different regions and different times is calculated by Monte Carlo method.Finally,based on the actual data of a certain area,the predicted spatial load values of different functional communities in one day are obtained,which can provide reference for future urban distribution network planning.
作者
邵宇鹰
彭鹏
陈桂儒
王冰
SHAO Yuying;PENG Peng;CHEN Guiru;WANG Bing(State Grid Shanghai Municipal Electric Power Company,Shanghai 200122;Nanjing Kuanta Information Technology Co.,Ltd.,Nanjing 211100)
出处
《计算机与数字工程》
2021年第10期2139-2144,共6页
Computer & Digital Engineering
基金
国家自然科学基金项目“基于智能算法的配电网空间负荷聚类及预测研究”(编号:52097018000G)资助。
关键词
电动汽车
充电负荷
出行链
蒙特卡洛
空间负荷预测
electric vehicle
charging load
travel chain
Monte Carlo
space load forecasting