期刊文献+

一类四阶中立型微分方程解的振动性

Oscillation of Solutions for a Class of Fourth Order Neutral Differential Equations
下载PDF
导出
摘要 高阶微分方程解的振动性问题近年来被广泛关注并取得了许多优秀成果,文章主要研究了一类四阶中立型微分方程的解的振动性,应用Riccati积分变换研究了不同的条件下方程解的振动性并给出了几个振动准则,最后用例子作了验证. In recent years,the oscillation of solutions of higher order differential equations has been widelyconcerned and many excellent results have been obtained.This paper mainly studies the oscillation of solutions ofa class of fourth-order neutral differential equations.By using Riccati integral transformation,the oscillation of so-lutions of the equations is studied,and several oscillation criteria are given.Finally,an example is used to verifyit.
作者 贾对红 JIA Dui-hong(Department,of Mathematies,Changzhi University,Changzhi 046000,Shanxi,China)
机构地区 长治学院数学系
出处 《山西师范大学学报(自然科学版)》 2021年第3期6-12,共7页 Journal of Shanxi Normal University(Natural Science Edition)
基金 山西省高等学校教学改革创新项目(J2018180) (J2020320) 长治学院教学改革创新项目(JC201911) 长治学院校级基金项目(XJ2020001301).
关键词 四阶 中立型 微分方程 RICCATI变换 fouth-order neutral differential equation Riccati transformation
  • 相关文献

参考文献1

二级参考文献10

  • 1杨雯抒,翁佩萱.具偏差变元的n阶微分方程共轭边值问题的多解性[J].华南理工大学学报(自然科学版),2004,32(7):81-85. 被引量:2
  • 2宋常修,翁佩萱.四阶非线性泛函微分方程边值问题的正解[J].华南理工大学学报(自然科学版),2006,34(7):128-132. 被引量:3
  • 3Gupta C P.Existence and uniqueness results for the bending of an elastic beam equation at resonance[J].J Math Anal Appl,1998,135:208-225.
  • 4Li Yongxiang.Positive solutions of fourth-order boundary value problems with two parameters[J].J Math Anal Appl,2003,281:477-484.
  • 5Jiang Daqing,Liu Huizhao,Xu Xiaojie.Nonresonant singular fourth-order boundary value problems[J].Applied Mathematics Letters,2005,18:69-75.
  • 6Ma Ruyun.Existence of Positive solutions of a fourth-order boundary value problem[J].Applied Mathematics and Computation,2005,168:1219-1231.
  • 7Weng Peixuan.Monotone method for boundary-value problem of functional differential equations[J].Differential Equations and Dynamical Systems,2003,11(3/4):307-320.
  • 8Weng Peixuan,Jiang Daqing.Existence of positive solutions for boundary value problem of second-order FDE[J].Computers and Mathematics with Applications,1999,37:1-9.
  • 9尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1981.252.
  • 10郭大均.非线性泛函分析[M].济南:山东科技出版社,2002.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部