摘要
为了对形如y″+p(x)y′+q(x)y=f(x)的二阶变系数非齐次线性微分方程的通解进行研究,利用高阶微分方程的常数变易法,在齐次情形的基础上给出了非齐次情况下的通解公式,将结果推广至二阶欧拉方程,并举例说明了具体应用.
In order to study the general solution of the second-order nonhomogeneous linear differential e-quation with variable coefficients,such as y″+p(x)y′+q(x)y=f(x),this paper uses the constant variationmethod of the higher-order differential equation,on the basis of the homogeneous case,gives the general solutionformula of the nonhomogeneous case,extends the result to the second-order Euler equation,and gives examplesto illustrate the specific application.
作者
邓瑞娟
崔洪瑞
DENG Rui-juan;CUI Hong-rui(Department of Basic,Wuhu Institute of Technology,Wuhu 241003,Anhui,China;GDPU Undergraduate School of Medieal Business,Guangdong Pharmaceutical University,Guangzhou 510006,Guangdong,China)
出处
《山西师范大学学报(自然科学版)》
2021年第3期13-16,共4页
Journal of Shanxi Normal University(Natural Science Edition)
基金
安徽高校自然科学研究重点项目(KJ2019A0976)
安徽省2020年高校自然科学研究重点项目(KJ2020A0916).
关键词
变系数
二阶
常数变易法
欧拉方程
variable coefficient
second order
constant variation method
Euler equation