期刊文献+

基于联合低秩稀疏分解的红外与可见光图像融合 被引量:3

Infrared and Visible Image Fusion via Joint Low-rank and Sparse Decomposition
下载PDF
导出
摘要 为进一步提高红外与可见光融合图像的细节信息和整体对比度,降低伪影和噪声,考虑了红外与可见光图像的相关性,提出了一种基于联合低秩稀疏分解的红外与可见光图像融合方法。首先,利用联合低秩稀疏分解方法将红外和可见光源图像分别分解成共同低秩分量、特有低秩分量和特有稀疏分量;其次,利用非下采样Shearlet变换方法对特有低秩分量进行融合;然后,采用区域能量融合策略实现特有稀疏分量融合;最后,共有低秩分量与融合后的特有低秩分量和特有稀疏分量相加得到最终融合图像。在Nato-camp、Bristol Eden Project和TNO公共测试数据集上进行的实验测试了所提算法性能。实验结果表明,与其他9种融合方法相比,所提方法能够有效地提取红外图像中的目标信息和保留可见光图像的背景信息,熵、互信息、标准差、视觉信息保真度、差异相关系数之和和Q Y客观评价指标明显优于对比方法。 In order to further improve the detail information and overall contrast of the fused images and reduce artifacts and noises,an infrared and visible image fusion method based on joint low-rank and sparse decomposition was proposed by considering the correlation between infrared and visible images.First,infrared and visible images are jointly decomposed into common low-rank component,specific low-rank components and specific sparse components by using the joint low-rank and sparse decomposition method.Second,the nonsubsampled shearlet transform-based fusion method is performed on the specific low-rank components.Third,the specific sparse components are fused by adopting regional energy fusion rule.Finally,the fused image is obtained by integrating the common low-rank component,the fused specific low-rank component and the fused specific sparse component.The experiments conducted on the Nato-camp、Bristol Eden Project and TNO publicly test data sets are used to test the performance of the proposed algorithm.The experimental results demonstrate that the proposed method can effectively extract the target information of infrared image and retain the background of visible image compared with other nine fusion methods.Meanwhile,the values of the objective evaluation metrics such as entropy,mutual information,standard deviation,visual information fidelity,the sum of the correlations of differences and Q Y are obviously better than those of the comparison methods.
作者 王文卿 马笑 刘涵 WANG Wenqing;MA Xiao;LIU Han(School of Automation and Information Engineering,Xi’an University of Technology,Xi’an,Shaanxi 710048,China;Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing,Xi’an University of Technology,Xi’an,Shaanxi 710048,China)
出处 《信号处理》 CSCD 北大核心 2021年第9期1770-1780,共11页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61703334,61973248) 中国博士后科学基金资助项目(2016M602942XB) 陕西省重点研发计划项目(2018ZDXM-GY-089)。
关键词 红外与可见光图像融合 联合低秩稀疏分解 非下采样Shearlet变换 区域能量 稀疏表示 infrared and visible image fusion joint low-rank and sparse decomposition nonsubsampled shearlet transform regional energy sparse representation
  • 相关文献

参考文献3

二级参考文献16

共引文献19

同被引文献26

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部