期刊文献+

基于干扰重构和盲源分离的混合极化抗SMSP干扰 被引量:6

Hybrid polarization anti-SMSP jamming based on jamming reconstruction and blind source separation
下载PDF
导出
摘要 线性调频(LFM)信号是现代雷达常用的发射信号,可以有效提高雷达距离分辨率和探测距离,然而频谱弥散(SMSP)干扰应用于主瓣自卫式干扰时,干扰信号与目标在时域、频域和空域高度重合,是一种能够有效对抗LFM信号的干扰样式。利用干扰信号与目标回波信号极化信息的差异,引入了混合极化雷达系统信号接收模型,提出了基于干扰重构和盲源分离的抗SMSP干扰算法,实现了对干扰的抑制。仿真结果表明:所提算法不仅降低了计算量而且在干信比(JSR)为25 dB的情况下,能够有效实现干扰抑制。 Linear Frequency Modulation(LFM)signal is a commonly used transmission signal of modern radar,which can effectively improve the range resolution and speed resolution.However,when Smeared Spectrum(SMSP)jamming is applied to the main lobe self-defense jamming,the jamming signal and the target height overlap in time domain,frequency domain and the airspace,which is an jamming pattern that can effectively combat LFM signals.In this paper,the difference of polarization information between the jamming signal and the target echo signal was used to construct a signal reception model of the hybrid polarization radar system.An anti-SMSP jamming algorithm based on jamming reconstruction and blind source separation was proposed to achieve jamming suppression.The simulation results show that the method proposed in this paper not only reduces the amount of calculation but also can effectively achieve jamming suppression when the jamming signal ratio is 25 dB.
作者 周长霖 王春阳 宫健 谭铭 李欣 包磊 ZHOU Changlin;WANG Chunyang;GONG Jian;TAN Ming;LI Xin;BAO Lei(Air and Missile Defense College,Air Force Engineering University,Xi'an 710051,China;Unit 75832 of PLA,Guangzhou 510515,China;College of Information and Communication,National University of Defense Technology,Wuhan 430019,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第9期1841-1848,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 中国博士后科学基金(2019M662257) 航空科学基金(201901096002)。
关键词 混合极化雷达 干扰重构 盲源分离 频谱弥散(SMSP)干扰 主瓣干扰 hybrid polarization radar jamming reconstruction blind source separation Smeared Spectrum(SMSP)jamming main lobe jamming
  • 相关文献

参考文献11

二级参考文献102

共引文献84

同被引文献65

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部