期刊文献+

SMA鼓包迟滞建模与控制策略 被引量:5

SMA bump hysteresis modeling and control strategy
原文传递
导出
摘要 激波控制鼓包SCB是一种减小激波阻力的流动控制技术。为了解决固定挠度鼓包工作范围较窄的问题,提出了一种具有双向记忆效应的形状记忆合金SMA鼓包,通过控制SMA鼓包的温度来改变其挠度。SMA鼓包最大可回复位移为6.1mm,为鼓包变形区域的2.65%。针对迟滞现象对鼓包挠度控制的影响,基于(Krasnosel′skii-Pokrovskii,KP)模型对SMA鼓包的温度/挠度迟滞特性进行了建模研究。采用粒子群算法来辨识模型参数,辨识得到的迟滞模型最大误差为0.107mm。设计了2种基于KP模型的PID控制方案,一种为无迟滞补偿的单目标PID控制,一种为迟滞逆模型前馈补偿的双目标PID控制。仿真与实验结果表明,迟滞逆模型前馈补偿的双目标PID控制时域性能优于无迟滞补偿的单目标PID控制。 Shock Control Bump(SCB)is a flow control method for shock drag reduction.To solve the problem of the narrow working range of the fixed deflection bump,we propose a Shape Memory Alloy(SMA)bump with two-way memory effect to change deflection by controlling the temperature.The maximum recoverable displacement of the SMA bump is6.1 mm,which is 2.65%of the deformation area of the bump.To reduce the influence of the hysteresis when controlling the deflection,we use the Krasnosel′skii-Pokrovskii(KP)model to model the temperature/deflection hysteresis of the SMA bump.The particle swarm algorithm is adopted to identify the parameters of the hysteresis model.The maximum error of the identified hysteresis model is 0.107 mm.Two PID control schemes based on the KP model are designed,one being singletarget PID control without hysteresis compensation,and the other being dual-target PID control with the hysteresis inverse model feedforward compensation.Simulation and experimental results show that the time-domain performance of the dualtarget PID control with the hysteresis inverse model feedforward compensation is better than the single-target PID control without hysteresis compensation.
作者 陈旭亮 张琛 季宏丽 裘进浩 CHEN Xuliang;ZHANG Chen;JI Hongli;QIU Jinhao(State Key Laboratory of Mechanics and Control of Mechanical Structures,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2021年第9期403-412,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11532006&51775267) 江苏省自然科学基金(BK20181286) 装备预研基金(61402100103) 江苏高校优势学科建设工程资助项目。
关键词 形状记忆合金 迟滞建模 Krasnosel'skii-Pokrovskii(KP)模型 激波控制鼓包 PID控制 shape memory alloy hysteresis modeling Krasnosel′skii-Pokrovskii(KP)model shock control bump PID control
  • 相关文献

参考文献2

二级参考文献15

  • 1Reneaux J. Overview on drag reduction technologies for civil transport aircraft[C] // European Congress on Computational Methods in Applied Science and Engineering. 2004.
  • 2Nickol C L, McCullers L A. Hybrid wing body configuration system studies[R]. AIAA- 2009-931, 2009.
  • 3Schmitt V, Destarac D. Recent progress in drag prediction and reduction for civil transport aircraft at ONEAR[R]. AIAA 1998-0137, 1998.
  • 4Liebeck R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
  • 5Qin N, Vavalle A, Le Moigne A, et al. Aerodynamic con siderations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6) :321-343.
  • 6Stanewsky E. Drag reduction by shock and boundary layer control[M]. New York:Springer-Verlag, 2002:383-413.
  • 7Ogawa H, Babinsky H, Patzold M, et al. Shock-wave/ boundary-layer interaction control using three-dimensional bumps for transonic wings[J]. AIAA Journal, 2008, 46 (6) :1442 -1452.
  • 8Jameson A, Hu R, Brown A C, et al. Aerodynamic shape optimization for the world's fastest P 51[R]. AIAA-2006-48, 2006.
  • 9Muramatsu S, Okada S, Hiraoka K. Numerical analysis of control of leading edge vortex on delta wing with blowing[R]. AIAA-2005-5088, 2005.
  • 10He C, Corke T C, Patel M P. Numerical and experimental analysis of plasma flow control over a hump model[R]. AIAA-2007-935 , 2007.

共引文献19

同被引文献71

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部