期刊文献+

Service Caching and Task Offloading for Mobile Edge Computing-Enabled Intelligent Connected Vehicles 被引量:3

原文传递
导出
摘要 The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applications.Most existing studies focusing on the issue of task offloading in ICVs assume that the MEC server can directly complete computation tasks without considering the necessity of service caching.However,this is unrealistic in practice because a large number of tasks require the use of corresponding third-party libraries and databases,that is,service caching.Therefore,we investigate the delay optimization in an MEC-enabled ICVs system with multiple mobile vehicles,resource-limited base stations(BSs),and one cloud server.We aim to determine the optimal service caching and task offloading decisions to minimize the overall system delay using mixed-integer nonlinear programming.To address this problem,we first convert it into a quadratically constrained quadratic program and then propose an efficient semidefinite relaxation-based joint service caching and task offloading(JSCTO)algorithm to obtain the service caching and task offloading decisions.In the simulations,we validate the efficiency of our proposed method by setting different numbers of vehicles and the storage capacity of BSs.The results show that our proposed JSCTO algorithm can significantly decrease the total delay of all offloaded tasks compared with the cloud processing only scheme.
作者 HUANG Mengting YI Yuhan ZHANG Guanglin 黄梦婷;易雨菡;张光林(College of Information Science and Technology,Donghua University,Shanghai 201620,China)
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期670-679,共10页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(Nos.61772130 and 62072096) the Fundamental Research Funds for the Central Universities(No.2232020A-12) the International S&T Cooperation Program of Shanghai Science and Technology Commission(No.20220713000) the Young Top-Notch Talent Program in Shanghai。
  • 相关文献

参考文献2

共引文献8

同被引文献42

引证文献3

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部