期刊文献+

Separation of n-heptane/isobutanol via eco-efficient vapor recompression-assisted distillation:process optimization and control strategy

原文传递
导出
摘要 In this study,vapor recompression and heat integration assisted distillation arrangements with either the low or high pressure in the reflux drum are proposed to reduce and/or eliminate the application of the costly refrigerant for the separation of n-heptane and isobutanol mixture.The high-pressure arrangement with vapor recompression and heat integration is the most attractive among these four intensified configurations since it can reduce total annual cost by 18.10%,CO_(2) emissions by 75.01%based on natural gas(78.78%based on heavy oil fuel),and second-law efficiency by 61.20%compared to a conventional refrigerated distillation system.Furthermore,exergy destruction in each component is calculated for the heat integration configurations and is shown in pie diagrams.The results demonstrate that the high-pressure configuration presents unique advantages in terms of thermodynamic efficiency compared to the low-pressure case.In addition,dynamic control investigation is performed for the economically efficient arrangement and good product compositions are well controlled through a dual-point temperature control strategy with almost negligible product offsets and quick process responses when addressing 20%step changes in production rate and feed composition.Note that there are no composition measurement loops in our developed control schemes.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第5期1169-1184,共16页 化学科学与工程前沿(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部