期刊文献+

预筛选PCA法在特征分类中的应用 被引量:3

Application of Pre-screening PCA in Feature Classification
下载PDF
导出
摘要 主成分分析(PCA)法在特征融合过程中未考虑特征之间特性对分类识别的影响,导致降维后特征无法正常有效分离,因此提出预筛选PCA方法以提取信号的时域特征、频域特征。利用相关系数法可有效区分对象之间的相互关系,先去掉不利于分类的特征,然后对新得到的矩阵进行PCA降维,把时域特征及频域多特征转化为综合性的评价指标,以获得更好的分类效果。结果表明:该方法的特征分离效果更好。研究结果有利于提高PCA分类识别准确率。 For principal component analysis(PCA)method,the influence of features on classification and recognition is not considered in the process of features fusion,which leads to the abnormal and non-effective separation of features after dimensionality reduction.Therefore,a pre-screening PCA method was proposed to extract the time domain features and frequency domain features of signals.The correlation coefficient method was used to distinguish the relationship between objects effectively.The features that were not conducive to classification were removed,and the PCA dimension reduction was performed on the newly obtained matrix to transform the time-domain features and frequency-domain multi-features into comprehensive evaluation indicators,so as to obtain better classification effect.The results show that this method has better feature separation effect.The results are helpful to improve the accuracy of PCA classification.
作者 石永芳 章翔峰 郑恒 SHI Yongfang;ZHANG Xiangfeng;ZHENG Heng(Medical Engineering and Technology College, Xinjiang Medical University, Urumqi Xinjiang 830017, China;School of Mechanical Engineering, Xinjiang University, Urumqi Xinjiang 830047, China)
出处 《机床与液压》 北大核心 2021年第19期178-182,共5页 Machine Tool & Hydraulics
基金 新疆科技厅区自然基金项目(2018D01C148)。
关键词 相关系数法 预筛选 主成分分析法 时域特征 Correlation coefficient method Pre-screening method Principal component analysis(PCA) Time-domain feature
  • 相关文献

参考文献8

二级参考文献80

  • 1谢廷峰,刘洪刚,吴建军.基于主元分析法的液体火箭发动机传感器故障检测与诊断[J].宇航学报,2007,28(6):1668-1672. 被引量:12
  • 2陆爽,李萌.基于小波神经网络的滚动轴承故障诊断[J].组合机床与自动化加工技术,2004(12):81-82. 被引量:5
  • 3于德介,陈淼峰,程军圣,杨宇.基于EMD的奇异值熵在转子系统故障诊断中的应用[J].振动与冲击,2006,25(2):24-26. 被引量:33
  • 4段向阳 王永生 苏永生.基于奇异值分解的信号特征提取方法研究.振动与冲击,2009,28(11):30-33.
  • 5Otman B,Yuan X H. Engine Fault Diagnosis Based on Multi-sensor Information Fusion Using Demp- ster-Shafer Evidence Theory[J]. Information Fu- sion, 2007,8(4): 379-386.
  • 6Niu G, Yang B S. Intelligent Condition Monitoring and Prognostics System Based on Data-fusion Strat- egy[J]. Expert Systems with Applications, 2010,37 (12):8831-8840.
  • 7Peng H, Long F, Ding C. Feature Selection Based on Mutual Information: Criteria of Max- dependency, Max- relevance, and Min- redundancy [J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2005,27(8): 1226-1238.
  • 8Zhao Xiaomin. Data-driven Fault Detection, Isolation and Identification of Rotating Machinery: with Ap- plications to Pumps and Gearboxes[D]. Edmonton:University of Alberta,2012.
  • 9Jolliffe I T. Principal Component Analysis[M]. New York: Springer-Verlag, 2002.
  • 10张正松.旋转机械振动检测与故障诊断[M].北京:机械工业出版社,1991.

共引文献84

同被引文献49

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部