期刊文献+

Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures 被引量:1

原文传递
导出
摘要 The influence of particle size and morphology on grain refinement in low stacking fault energy(SFE)alloys was studied by comparing the grain structures in single-and multi-phase Al-bronze(AB)alloys following equal channel angular pressing(ECAP)between 350 and 500℃.In particular,nickel aluminium bronze(NAB)was chosen as it contained both coarse and fine rounded particles,as well as a lamellar phase which evolved during ECAP.Grain refinement in the single-phase alloy was achieved through dynamic recrystallisation initiated at deformed twin boundaries.By contrast,different mechanisms were observed in the particle-containing NAB.Recrystallisation around the coarseκⅡparticles(~5μm)was promoted through particle stimulated nucleation(PSN),whereas recrystallisation in the region of the fineκⅣ(~0.4μm)was delayed due to the activation of secondary slip.Grain refinement in areas of the lamellarκⅢshowed significant variation,depending on the lamellar orientation relative to the shear plane of ECAP.As the lamellae deformed,numerous high angle grain boundaries were generated between fragments and served as nucleation sites for recrystallisation,while PSN occurred around spheroidised lamellae.The spreading of theκⅢparticles by ECAP then enhanced the total area of recrystallised grains.
作者 C.J.Barr K.Xia
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第23期57-68,共12页 材料科学技术(英文版)
基金 supported by DMTC Limited(Australia)。
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部