期刊文献+

改进蝙蝠算法优化极限学习机的大坝变形预测模型分析 被引量:9

Dam deformation prediction model based on IBA-ELM model
下载PDF
导出
摘要 针对大坝变形监测数据中存在的非线性关系强和传统大坝预测模型精度不高等问题,本文利用改进蝙蝠算法选取最优的参数作为极限学习机的连接权值和阈值,并提出了一种基于改进蝙蝠算法(IBA)优化极限学习机(ELM)的大坝变形预测模型(IBA-ELM)。将IBA-ELM模型应用于工程实例,通过对某地水库大坝监测数据预测分析,验证IBA-ELM模型、BA-ELM和GA-ELM模型预测结果并进行精度评价,3种模型的预测值与实测值平均绝对误差分别为1.178 3、0.459 8、0.335 6 mm, IBA-ELM模型的预测精度高于另外2种模型,表明IBA-ELM模型能有效提高大坝变形预测能力。 Aiming at the problems of strong nonlinear relationship in dam deformation monitoring data and low precision of traditional dam prediction model, a dam deformation prediction model based on improved bat algorithm(IBA) and optimized extreme learning machine(ELM) is proposed by using the improved bat algorithm to select the optimal parameters as the connection weights and thresholds of the extreme learning machine(IBA-ELM). The IBA-ELM model is applied to an engineering case, and the accuracy of IBA-ELM, BA-ELM and GA-ELM model prediction results are evaluated through the prediction and analysis of dam monitoring data of a reservoir. The average absolute errors between predicted values and measured values are 1.178 3, 0.459 8 and 0.335 6, IBA-The prediction accuracy of ELM model is higher than the other two models, which indicates that IBA-ELM model can effectively improve the prediction ability of dam deformation and has certain application value.
作者 陈优良 陈洋 肖钢 陶剑辉 CHEN Youliang;CHEN Yang;XIAO Gang;TAO Jianhui(School of Civil and Surveying&Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China;School of Geosciences and Info-physics,Central South University,Changsha 410000,China;Urban Planning Desion Institute of Ganzhou,Ganzhou 341000,China)
出处 《测绘通报》 CSCD 北大核心 2021年第9期68-73,共6页 Bulletin of Surveying and Mapping
基金 江西省教育厅科技项目(GJJ170522) 国家大坝中心开放基金项目(CX2019B07)。
关键词 大坝变形 极限学习机 蝙蝠算法 遗传算法 变异因子 dam deformation extreme learning machine bat algorithm genetic algorithm variation factor
  • 相关文献

参考文献16

二级参考文献190

共引文献554

同被引文献116

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部