期刊文献+

基于MARKOV随机信道分配的车队控制研究

Research on Fleet Control Based on Markov Random Channel Allocation
下载PDF
导出
摘要 随着车辆的增加与交通的发展,车辆拥堵已经成为城市的一大问题,针对网络化车队的控制系统,首先给出了异构的车队控制模型,考虑到车辆间通信信道随机分配的特性,将整个车队建模为转移概率部分未知的多状态Markov跳跃系统,能够有效的解决车队控制系统中存在的信道受限问题。基于新的车队模型,利用Lyapunov方法和LMI,给出了车队随机稳定的条件以及相应控制器的设计方法。最后通过MATLAB仿真和Arduino车队实验,验证了上述方法的有效性和实用性。 With the increase of vehicles and the development of traffic, traffic congestion has become a major problem in cities.This paper is concerned with networked platoon control system.The heterogeneous modeling of platoon was given primarily.In order to address the access constraints for the networked fleet control system with random channel assignment on inter-vehicle communication, the fleet modeling was described as a multi-state Markov jumping system with known transtion probabilities.Based on the new platoon modeling, an approach to stochastically stable and controller design was derived by using Lyapunov theory and LMI.Finally, the effectiveness and practicability of the above method were verified by MATLAB simulation and Arduino fleet experiment.
作者 乔栋 谢亚龙 贾权 姚涛 QIAO Dong;XIE Ya-long;JIA Quan;YAO Tao(College of Architecture and Geomatics Engineering,Shanxi Datong University,Datong Shanxi 037009,China;College of Coal Engineering,Shanxi Datong University,Datong Shanxi 037009,China;College of Mechanical and Electrical Engineering,Shanxi Datong University,0 Datong Shanxi 37009,China;College of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机仿真》 北大核心 2021年第9期138-144,共7页 Computer Simulation
基金 面向波浪振动的弹性并联俘能机构非线性动力学分析及应用研究(51775166) 大同市科技攻关项目(2016024)。
关键词 异构车队控制系统 信道分配 线性矩阵不等式 Heterogeneous fleet control system Channel assignment Linear matrix inequality(LMI)
  • 相关文献

参考文献4

二级参考文献38

  • 1Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems[J]. Proceedings of the IEEE, 2007, 95(1): 138-162.
  • 2Rehbinder H, Sanfridson M. Scheduling of a limited communication channel for optimal control[J]. Automatica, 2004, 40(3): 491-500.
  • 3Gao H J, Chen T W. A new delay system approach to network-based control[J]. Automatica, 2008, 44(1): 39-52.
  • 4Martins E C, Jota F G. Design of networked control systems with explicit compensation for time-delay variations[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 43(3): 308-318.
  • 5Smith S C, Seiler P. Estimation with lossy measurements: Jump estimators for jump systems[J]. IEEE Transactions on Automatic Control, 2003, 48(12): 2163-2171.
  • 6Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for linear uncertain discrete-time systems[J]. Automatica, 2009, 45(2): 692-700.
  • 7Fu M Y, de Souza C E. State estimation for linear discrete-time systems using quantized measurements[J]. Automatica, 2009, 45(8): 2937-2945.
  • 8Brockett R. Stabilization of motor networks[C]//Proceedings of the 34th IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 1995: 1484-1488.
  • 9Zhang L, Hristu-Varsakelis D. Communication and control co-design for networked control systems[J]. Automatica, 2006, 42(6): 953-958.
  • 10Zhang L, Hristu-Varsakelis D. LQG control under limited communication[C]//Proceedings of the 44th IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2005: 185-190.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部