期刊文献+

Anthropogenic influence on extreme Meiyu rainfall in 2020 and its future risk 被引量:2

原文传递
导出
摘要 Eastern China experienced excessive Meiyu rainfall in the summer of 2020,with a long rainy season and frequent extreme rainfall events.Extreme rainfall occurred on daily to monthly time scales.In particular,persistent heavy rainfall events occurred;e.g.,the maximum accumulated rainfall over four consecutive weeks(Rx28day)in the lower reaches of the Yangtze River was 94%greater than climatology,breaking the observational record since 1961.With ongoing anthropogenic climate change,it is vital to understand the anthropogenic influence on this extreme rainfall event and its driving mechanisms.In this study,based on multi-model simulations under different external forcings that participate in the Detection and Attribution Model Intercomparison Project(DAMIP)in the Coupled Model Intercomparison Project-phase 6(CMIP6),we show that anthropogenic forcing has reduced the probability of the Rx28day extreme rainfall as that in observations in the lower reaches of the Yangtze River in 2020,by 46%(22–62%).Specifically,greenhouse gas(GHG)emissions have increased the probability by 44%as a result of atmospheric warming and moistening.However,this effect was offset by anthropogenic aerosols,which reduced the probability by 73%by reducing atmospheric moisture and weakening the East Asian summer monsoon circulation.With the continuous emissions of GHGs and reductions in aerosols in the future,similar persistent heavy rainfall events are projected to occur more frequently.A higher occurrence probability is expected under higher emission scenarios,which is estimated to be 4.6,13.6 and 27.7 times that in the present day under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 emission scenarios,respectively,by the end of the 21st century.Thus,efficient mitigation measures will help to reduce the impacts related to extreme rainfall.
出处 《Science China Earth Sciences》 SCIE EI CSCD 2021年第10期1633-1644,共12页 中国科学(地球科学英文版)
基金 supported by the National Key R&D Program of China(Grant No.2018YFC1507701) the National Natural Science Foundation of China(Grant No.41988101).
  • 相关文献

参考文献5

二级参考文献15

共引文献171

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部