摘要
The interaction between the aggregation-induced emissive(AIE) luminogens(AIEgen) and the polymer is the key scientific question in the design of functional AIE hydrogels. In this study, we report the AIE behavior of a poly(acrylic acid)(PAAc) and poly(acrylamide)(PAAm) interpenetrating network(IPN) hydrogel doped with tetra-cationic tetraphenylethene(TCTPE). The cationic AIEgen can bind with PAAc through ionic interaction, while PAAc and PAAm chains can associate with each other through hydrogen-bonds(H-bonds). These two interactions can restrict the intramolecular rotation and thus activate the luminescence of the AIEgen. The PAAc-PAAm H-bonds can be broken by increasing temperature or p H, restoring the intramolecular rotation of the AIEgen and quenching the fluorescence of the hydrogel. Therefore, the TCTPE-doped IPN hydrogel is designed as temperature-and p H-sensitive displayers which can record information imprinted by photo-printing or iono-printing with good switchability and reversibility. Another application of this TCTPE-doped hydrogel is demonstrated as a luminescent soft actuator, which has fast shape deformation and editable fluorescence pattern. The above results reveal a pathway to tune the emission behavior through tuning polymer-polymer and polymer-AIEgen interactions, which may inspire new design strategies of aggregation-induced emissive polymers and broaden their applications.
基金
the National Natural Science Foundation of China(22075154,21604044)
Natural Science Foundation of Zhejiang Province(LY19B040001)
Ningbo Public Welfare Science and Technology Project(2019C50072)。