摘要
Pursuing purely organic materials with high-efficiency near-infrared(NIR) emissions is fundamentally limited by the large nonradiative decay rates(k_(nr)) governed by the energy gap law. To date, reported endeavors to decelerate k_(nr) are mainly focused on reducing the electron-vibration coupling with the electronic nonadiabatic coupling assumed as a constant. Here, we demonstrated a feasible and innovative strategy by employing intermolecular charge-transfer(CT) aggregates(CTA) to realize high-efficiency NIR emissions via nonadiabatic coupling suppression. The formation of CTA engenders intermolecular CT in the excited states;thereby, not only reducing the electronic nonadiabatic coupling and contributing to small k_(nr) for high-efficiency NIR photoluminescence, but also stabilizing excited-state energies and achieving thermally activated delayed fluorescence for highefficiency NIR electroluminescence. This work provides new insights into aggregates and opens a new avenue for organic materials to overcome the energy gap law and achieve high-efficiency NIR emissions.
基金
the National Natural Science Foundation of China(51773109,21788102)
National Key R&D Program of China(2020YFA0715001,2017YFA0204501)
National Postdoctoral Program for Innovative Talents(BX20180159)
the Project funded by China Postdoctoral Science Foundation(2019M660606)。