摘要
The promising solar irradiated photocatalyst by pairing of bismuth oxide quantum dots(BQDs)doped TiO_(2)with nitrogen doped graphene oxide(NGO)nanocomposite(NGO/BQDs-TiO_(2))was fabricated.It was used for degradation of organic pollutants like 2,4-dichlorophenol(2,4-DCP)and stable dyes,i.e.Rhodamine B and Congo Red.X-ray diffraction(XRD)profile of NGO showed reduction in oxygenic functional groups and restoring of graphitic crystal structure.The characteristic diffraction peaks of TiO_(2)and its composites showed crystalline anatase TiO_(2).Morphological images represent spherical shaped TiO_(2)evenly covered with BQDs spread on NGO sheet.The surface linkages of NO-O-Ti,C-O-Ti,Bi-O-Ti and vibrational modes are observed by Fourier transform infrared spectroscopy(FTIR)and Raman studies.BQDs and NGO modified TiO_(2)results into red shifting in visible region as studied in diffused reflectance spectroscopy(DRS).NGO and BQDs in TiO_(2)are linked with defect centers which reduced the recombination of free charge carriers by quenching of photoluminescence(PL)intensities.X-ray photoelectron spectroscopy(XPS)shows that no peak related to C-O in NGO/BQDs-TiO_(2)is observed.This indicated that doping of nitrogen into GO has reduced some oxygen functional groups.Nitrogen functionalities in NGO and photosensitizing effect of BQDs in ternary composite have improved photocatalytic activity against organic pollutants.Intermediate byproducts during photo degradation process of 2,4-DCP were studied through high performance liquid chromatography(HPLC).Study of radical scavengers indicated that O_(2)^(·-) has significant role for degradation of 2,4-DCP.Our investigations propose that fabricated nanohybrid architecture has potential for degradation of environmental pollutions.
基金
International Islamic University
Pakistan Institute of Engineering and Applied Sciences
Higher Education Commission of Pakistan(NRPU grant No.3660)
Aalto University Finland。