期刊文献+

考虑经济成本的微电网调度运行 被引量:5

Dispatching Operation of Micro-grids Considering Economic Cost
下载PDF
导出
摘要 为提高微电网经济运行水平,首先以微电网发电成本最小为目标,考虑微电网运行实际约束条件,将蜂群算法运用到并网状态下的微电网经济调度模型中;其次,将对立学习策略初始化种群,改善初始种群质量,同时将Metropolis准则引入蜂群算法,提高跳出局部最优解的概率;最后,以并网状态下的微电网为例,比较未改进蜂群算法与改进蜂群算法优化结果。结果表明,改进蜂群算法的调度方案降低了微电网的日调度综合成本,同时验证了所改进算法在求解微电网调度优化问题上的有效性与优越性。 In order to improve economic operation level of the micro-grid, firstly, with the aim of minimizing its generation cost, under consideration of its actual operation constraints, the bee colony algorithm was applied to the economic dispatch model of the micro-grid under the condition of grid connection. Secondly, the opposite learning strategy was used to initialize the population and improve the quality of initial population. In the meantime, the Metropolis criterion was introduced into the bee colony algorithm so as to raise the probability of jumping out of local optimal solution. Finally, taking the micro-grid in grid connected status as example, optimization results of the unimproved bee colony algorithm and the improved bee colony algorithm were compared. The results indicated that the dispatch scheme of the improved bee colony algorithm reduced the comprehensive cost of daily dispatch of the micro-grid, and verified the effectiveness and superiority of the improved algorithm in solving micro-grid dispatch optimization.
作者 袁华骏 叶筱怡 耿宗璞 Yuan Huajun;Ye Xiaoyi;Geng Zongpu(College of Electric Power Engineering,Nanjing Institute of Technology,Nanjing Jiangsu 211167,China)
出处 《电气自动化》 2021年第5期48-50,共3页 Electrical Automation
基金 2020江苏省研究生科研与实践创新计划项目(SJCX20-0721) 南京工程学院科技创新项目(TB20201601)。
关键词 微电网 经济调度 蜂群算法 对立学习策略 METROPOLIS准则 micro-grid economic dispatch bee colony algorithm opposite learning strategy Metropolis criterion
  • 相关文献

参考文献10

二级参考文献108

  • 1任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:169
  • 2KARABOGA D, BASTURK B. On the performance of arti- ficial bee colony (ABC) algorithm [ J ]. Applied Soft Com- puting, 2008,8 ( 1 ) :687-697.
  • 3PENEV K, LITTLEFAIR G , Free Search--a comparative analysis[ J ]. Information Sciences, 2005,172 ( 1 ) : 173- 193.
  • 4RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A.opposition-Based differential evolution [ J ]. IEEE Transac- tions on Evolutionary Computation , 2008,12 ( 1 ) :64-79.
  • 5KARBOGA D, BASTURK B. A powerful and efficient algo- rithm for numerical function optimization: artificial bee colo- ny (ABC) algorithm [ J ]. Journal of Global Optimization, 2007,39 ( 3 ) :459 -471.
  • 6TIAHOOSH H R. Opposition-based learning: a new scheme for machine intelligence [ C ]//Proceedings of International Computational Intelligence for Modeling Control and Auto- mation. Sydney, Australia, 2005 : 695-701.
  • 7LIU Xingbao, CAI Zixing. Artificial bee colony program- ming made faster[ J ]. Natural Computation, 2009 (8) : 14- 16.
  • 8JANEZ B, SASO G, BORKO B. Self-adapting control pa- rameters in differential evolution: a comparative study on numerical benchmark pro-blems[ J]. IEEE Transactions on Evolutionary Comp-utation, 2006,12 (10) :646-657.
  • 9RAHNAMAYAN S, TIZItOOSH H R, SALAMA M M A. Opposition versus randomness in soft computing techniques[J]. Applied Soft Computing, 2008, 8 (2) : 906-918.
  • 10Hatziargyriou N D, Dimeas A, Tsikalakis A G, et al. Management of microgrids in market environment[C]// International Conference on . Future PowerSystems. Amsterdam, 2005. 1-7.

共引文献465

同被引文献44

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部