期刊文献+

镁合金复合变形过程中的动态再结晶及微观组织演变规律研究 被引量:4

Study on Dynamic Recrystallization and Microstructure Evolution of Magnesium Alloy in Process of Composite Deformation
下载PDF
导出
摘要 对挤压态AZ31镁合金进行了压痕-压平复合变形工艺实验研究,分析了复合变形工艺参数对镁合金动态再结晶组织及孪晶组织的影响规律。研究结果表明,经过复合变形后,AZ31镁合金的微观组织呈现孪晶组织和动态再结晶组织。复合变形系数和变形温度对镁合金微观组织影响明显。随着复合变形系数的增大和变形温度的提高,动态再结晶体积分数随之增大,动态再结晶组织逐渐增多,最后覆盖原始孪晶组织,得到分布均匀且细小的等轴晶,有效改善了镁合金材料的组织性能。 Indentation-flattening compound deformation technology(IFCDT) of extruded AZ31 magnesium alloy was studied experimentally, and the effect law of deformation parameters on the dynamic recrystallization structure and twin structure of magnesium alloy was analyzed. The results show that the microstructure of AZ31 magnesium alloy presents twin structure and dynamic recrystallization structure after compound deformation. The effect of the compound deformation coefficient and deformation temperature on the microstructure of magnesium alloy is obviously. With the increase of the compound deformation coefficient and deformation temperature, the volume fraction of dynamic recrystallization increases,and the dynamic recrystallization structure increases gradually. Finally, the original twin structure is covered. Refined and equiaxed grains with uniform distribution are obtained, which effectively improves the microstructure and properties of the magnesium alloy.
作者 王忠堂 吴凯琦 王明浩 杨君宝 梁海成 WANG Zhongtang;WU Kaiqi;WANG Minghao;YANG Junbao;LIANG Haicheng(School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,China)
出处 《热加工工艺》 北大核心 2021年第19期94-98,共5页 Hot Working Technology
基金 国家自然科学基金资助项目(51575366) 辽宁省教育厅资助项目(LG202010)。
关键词 AZ31镁合金 复合变形 动态再结晶 微观组织 AZ31 magnesium alloy composite deformation dynamic recrystallization microstructure
  • 相关文献

参考文献5

二级参考文献82

  • 1刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12. 被引量:114
  • 2陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113. 被引量:48
  • 3DEL VALLE J A, PEREZ-PRADO M T, RUANO O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J]. Materials Science and Engineering A, 2003, 355(1/2): 68-78.
  • 4KHAN A S, PANDEY A, GNAUPEL-HEROLD T, MISHRA R K. Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures[J]. International Journal of Plasticity, 2011, 27(5): 688-706.
  • 5BARNETT M R. Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J]. Materials Science and Engineering A, 2007, 464(1/2): 8-16.
  • 6MARTIN E, CAPOLUNGO L, JIANG L A, JONAS J J. Variant selection during secondary twinning in Mg-3%AI[J]. Acta Materialia, 2010, 58(11): 3970-3983.
  • 7BARNETT M R, KESHAVARZ Z, BEER A G, MAX. Non-Schmid bchaviour during secondary twinning in a polycrystalline magnesium alloy[J]. Acta Matedalia, 2008, 56(1) 5-15.
  • 8CHINO Y, KIMURA K, HAKAMADA M, MABUCHI M. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J]. Materials Science and Engineering A, 2008, 485(1/2): 311-317.
  • 9WANG, B S, XIN R L, HUANG G J, LIU Q. Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression[J]. Materials Science and Engineering A, 2012, 534 588-593.
  • 10WANG Y N, HUANG J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-AI-Zn alloy[J]. Acta Materialia, 2007, 55(3): 897-905.

共引文献20

同被引文献39

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部