期刊文献+

Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior 被引量:4

原文传递
导出
摘要 Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using electron back-scatter diffraction(EBSD)data.In spite of lack of large sets of EBSD data,we were successful in achieving the desired accuracy and accomplishing the objective of recognizing the boundaries.Compared with a low model accuracy of<50%as using Euler angles or axis-angle pair as characteristic features,the accuracy of the model was significantly enhanced to about 88%when the Euler angle was converted to overall misorientation angle(OMA)and specific misorientation angle(SMA)and considered as important features.In this model,the recall score of prior austenite grain(PAG)boundary was~93%,high angle packet boundary(OMA>40°)was~97%,and block boundary was~96%.The derived outcomes of ML were used to obtain insights into the ductile-to-brittle transition(DBTT)behavior.Interestingly,ML modeling approach suggested that DBTT was not determined by the density of high angle grain boundaries,but significantly influenced by the density of PAG and packet boundaries.The study underscores that ML has a great potential in detailed recognition of complex multi-hierarchical microstructure such as bainite and martensite and relates to material performance.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期49-58,共10页 材料科学技术(英文版)
基金 financially supported by the National Key Research and Development Program of China(No.2017YFB0304900)。
  • 相关文献

同被引文献49

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部