期刊文献+

一种改进型关联规则算法设计与研究 被引量:2

Design and Research of an Improved Algorithm for Association Rules
下载PDF
导出
摘要 Apriori算法是一种常用的关联规则分析算法,通过该算法分析,可以得到同一类型的几个事务之间的关联关系,进而对其关联的后续事务进行预测。但该算法也存在不足,为了解决该算法的问题,通过分析了Apriori关联规则算法挖掘过程,然后提出了利用事先剪枝策略进行算法的改进,通过使用Matlab对改进的算法进行了评测,同时使用了U检验思想衡量标准的算法对评测的结果进行信度测算。通过评测发现,改进后的算法提高了产生关联规则的效率及规则集合的精准性。 Apriori algorithm is a commonly used association rule analysis algorithm.Through the analysis of this algorithm,the association relationship between several transactions of the same type can be obtained,and then the subsequent transactions related to it can be predicted.However,the algorithm also has shortcomings.In order to solve the problem of the algorithm,the mining process of the Apriori association rule algorithm is analyzed,and then the improvement of the algorithm is proposed by using the prior pruning strategy.The improved algorithm is evaluated by using Matlab,and the U test is used to measure the standard.The algorithm measures the reliability of the evaluation results.Through the evaluation,it is found that the improved algorithm improves the efficiency of generating association rules and the accuracy of the rule set.
作者 邓毅 邓晓慧 DENG Yi;DENG Xiaohui(College of Artificial Intelligence,Chongqing Creation Vocational College,Yongchuan Chongqing 402160,China;Business College,Chongqing City Vocational College,Yongchuan Chongqing 402160,China)
出处 《四川职业技术学院学报》 2021年第5期148-153,共6页 Journal of Sichuan Vocational and Technical College
关键词 剪枝 关联规则 U检验 信度 pruning association rules U-test reliability
  • 相关文献

参考文献4

二级参考文献31

  • 1王时德.校园网数据库的安全问题[J].中国西部科技,2004,3(11):53-55. 被引量:2
  • 2鲁群霞,熊兴福,张启亮.论产品界面的人机交互设计[J].包装工程,2005,26(5):163-164. 被引量:26
  • 3丁玉兰.人机工程学[M].北京:北京理工大学出版社,2002..
  • 4National Computer Security Center.Inference and Aggregation Issues in Secure Database Management Systems:[NSCS Techni-cal Report -005],1990.
  • 5Fernandez EB;Summers RC;Wood C.Database Security and Integrity,1981.
  • 6Daring P.Network Appliance NetCaehe White Paper:Arehhecture and Deployment,2007.
  • 7Cao L, Zhao Y, Zhang H, et al. Flexible frameworks for actionable knowledge discovery. IEEE Transactions on Knowledge and Data En- gineering, 2010 ;22 ( 9 ) : 1299-1312.
  • 8Chiu H P, Tang Y T,Hsieh K L. Applying cluster-based fuzzy asso- ciation rules mining framework into EC environment. Apptied Soft Computing, 2012;12 (8) : 2114-2122.
  • 9Fakhrahmad S M, Dastghaibyfard G H. An efficient frequent pattern mining method and its parallelization in transactional databases. Jour- nal of Informa- tion Science and Engineering, 2011 ; 27 ( 2 ) : 511 -525.
  • 10Lan G C, Hong T P, Tseng V S. A projection-based approach for discovering high average-utility itemsets. Journal of Information Sci-ence and Engineering, 2012; 28( 1 ) :193-209.

共引文献90

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部