摘要
在集合Ω中,用犹豫模糊集、Ω-模糊集来研究布尔代数,给出Ω-犹豫模糊子代数的概念以及等价的判定定理,证明Ω-犹豫模糊子代数的交仍然是Ω-犹豫模糊子代数,并在同态的前提下,得到布尔代数的Ω-犹豫模糊子代数像与原像的不变性。最后通过定义集合R^(Ω),并根据在R^(Ω)上定义的运算构造了一个布尔代数<R^(Ω),⊕,?,-,I_(0),I_(1)>,研究它上的犹豫模糊子代数与Ω-犹豫模糊子代数的性质。
LetΩ-be a set.By combining the hesitant fuzzy sets,Ω-fuzzy sets and Boolean-algebras,the concept ofΩ-hesitant fuzzy subalgebras and the equivalence theorem are given.It is proved that the intersection ofΩ-hesitant fuzzy subalgebras is stillΩ-hesitant fuzzy subalgebras.Under the premise of homomorphism,the invariance between the image and the original image ofΩ-hesitant fuzzy subalgebras of Boolean algebras is obtained.Finally,a Boolean algebra is constructed by the defined set RΩand the operations defined on RΩ,the properties of the hesitant fuzzy subalgebras andΩ-hesitant fuzzy subalgebras are studied.
作者
姜曼
JIANG Man(School of Public Courses,Xi’an Traffic Engineering Institute,Xi’an 710300,China)
出处
《内蒙古农业大学学报(自然科学版)》
CAS
2021年第4期97-101,共5页
Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金
陕西省自然科学基础研究计划(2021JQ-893)。