期刊文献+

模板法制备磷酸铁锂纳米颗粒的研究 被引量:2

Study on preparation of LiFePO nanoparticle by template method
下载PDF
导出
摘要 以球孔碳为模板,通过一步法和两步法合成了纳米磷酸铁锂。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和扣电测试表征材料的性能。相比一步法,两步法合成的磷酸铁锂晶粒更小,各项电化学性能更好。结果显示:两步法磷酸铁锂的放电比容量在1C放电比容量为136mAh/g,循环后,比容量无明显衰减;而一步法磷酸铁锂1C放电比容量为108.9mAh/g,循环后比容量迅速衰减到100mAh/g以下。晶粒大小对于磷酸铁锂的电化学性能具有关键影响,而模板有利于控制磷酸铁锂纳米颗粒的形貌和尺寸。 The lithium iron phosphate(LiFePO_(4))nanoparticles were successfully synthesized by one-step method and two-step method respectively,using spherically porous carbon(3 DOM carbon)as a template.The properties of the material were examined by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM),laser particle size analyzer,and coin cell tests.The material synthesized by two-step method(twostep LFP)had smaller particle size,which resulted in higher specific capacity and better rate performance than the one synthesized by one-step method(one-pot LFP).The discharge specific capacity of two-step LFP was about 136 mAh/g at 1 C,and for one-pot LFP 109 mAh/g at 1 C.After cycles,the capacity of two-step LFP had no significant attenuation,while the capacity of one-pot LFP quickly degraded to below 100 mAh/g after a few cycles.Study shown that the particle size had a critical effect on the electrochemical performance of LiFePO_(4),and the template was an effective way to control the particle size of LiFePO_(4)nanoparticle.
作者 王苑 阮丁山 曾勇 张莹娇 Wang Yuan;Ruan Dingshan;Zeng Yong;Zhang Yingjiao(Research Institute,Guangdong Brunp Recycling Technology Co.,Ltd.,Foshan 528100)
出处 《化工新型材料》 CAS CSCD 北大核心 2021年第9期151-154,158,共5页 New Chemical Materials
关键词 磷酸铁锂 球孔碳模板 纳米颗粒 一步法 两步法 lithium iron phosphate spherical porous carbon template nanoparticle one-pot two-step
  • 相关文献

参考文献7

二级参考文献43

  • 1唐昌平,应皆荣,姜长印,万春荣.磷酸铁锂正极材料改性研究进展[J].化工新型材料,2005,33(9):22-25. 被引量:14
  • 2张静,黄可龙,唐联兴.LiFePO_4的水热法制备及改性研究[J].电池,2005,35(6):425-426. 被引量:9
  • 3Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997,144(4) : 1188.
  • 4Sylvan Franger , Frederic Le Cras , Carole Bourbou , et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J]. Journal of Power Sources, 2003, 119-121; 252-257.
  • 5Shoufeng Y, Peter Y Z Whittinggham, M Stanley Whittinghau. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochem Commun, 2001, 3(9) ; 505-508.
  • 6Jaewon Lee, Amyn S Teja. Characteristics of lithium iron phosphate ( LiFePO4 ) particies synthesized in subcritical and supercritical water [J]. J of Supercriti-cal Fluids,2005, 35 : 83-90.
  • 7[1]Kratschmer W,Lamb L D,Fostiropoulos K,et al.Nature,1990,347:354-356.
  • 8[2]Haufler R E,Chai Y,Chibante L P F,et al.Mater.Res.Soc.Symp.Proc.1991,206:627-631.
  • 9[3]Diederich F,Ettl R,Rubin Y,et al.Science,1991,252:548-549.
  • 10[4]Kikuchi K,Nakahara N,Wakkabayashi T,et al.Chem.Phys.Letters,1992,188:177-179.

共引文献30

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部